BACKGROUND Liver transplantation aims to increase the survival of patients with end-stage liver diseases and improve their quality of life.The number of organs available for transplantation is lower than the demand.To...BACKGROUND Liver transplantation aims to increase the survival of patients with end-stage liver diseases and improve their quality of life.The number of organs available for transplantation is lower than the demand.To provide fair organ distribution,predictive mortality scores have been developed.AIM To compare the Acute Physiology and Chronic Health Evaluation IV(APACHE IV),balance of risk(BAR),and model for end-stage liver disease(MELD)scores as predictors of mortality.METHODS Retrospective cohort study,which included 283 adult patients in the postoperative period of deceased donor liver transplantation from 2014 to 2018.RESULTS The transplant recipients were mainly male,with a mean age of 58.1 years.Donors were mostly male,with a mean age of 41.6 years.The median cold ischemia time was 3.1 hours,and the median intensive care unit stay was 5 days.For APACHE IV,a mean of 59.6 was found,BAR 10.7,and MELD 24.2.The 28-day mortality rate was 9.5%,and at 90 days,it was 3.5%.The 28-day mortality prediction for APACHE IV was very good[area under the curve(AUC):0.85,P<0.001,95%CI:0.76-0.94],P<0.001,BAR(AUC:0.70,P<0.001,95%CI:0.58–0.81),and MELD(AUC:0.66,P<0.006,95%CI:0.55-0.78),P<0.008.At 90 days,the data for APACHE IV were very good(AUC:0.80,P<0.001,95%CI:0.71–0.90)and moderate for BAR and MELD,respectively,(AUC:0.66,P<0.004,95%CI:0.55–0.77),(AUC:0.62,P<0.026,95%CI:0.51–0.72).All showed good discrimination between deaths and survivors.As for the best value for liver transplantation,it was significant only for APACHE IV(P<0.001).CONCLUSION The APACHE IV assessment score was more accurate than BAR and MELD in predicting mortality in deceased donor liver transplant recipients.展开更多
BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages ...BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.展开更多
This study investigates the factors that impact farmers'adoption of risk management strategies(RMS)in Pakistan during times of uncertainty.The study examines farmers'adoption of RMS using both multinomial prob...This study investigates the factors that impact farmers'adoption of risk management strategies(RMS)in Pakistan during times of uncertainty.The study examines farmers'adoption of RMS using both multinomial probit(MNP)and multivariate probit(MVP).Data were collected from 382 farmers sampled from four districts in KhyberPakhtunkhwa(KP)province of Pakistan via a multistage sampling technique.This study utilizes the MNP model,considering the assumption of Independence of Irrelevant Alternatives(IIA)and incorporating correlated error terms.The objective is to understand farmers'behavior in risky situations and determine if there is heterogeneity.Results are compared with the MVP model to assess robustness and gain deeper understanding of farmers'decisionmaking processes.The research findings reveal that our results are robust,and farmers behave homogeneously in various RMS scenarios.Farmers adopt RMS individually or in combination to mitigate the adverse effects of natural calamities on their livelihood.The risk-averse farmers,who perceive weather-related risks as a threat,access credits and information,and have farms close to a river are more likely to adopt RMS,irrespective of the format of the strategies available.Moreover,the predicted probabilities and correlation of the RMS and RM categories have strengthened our model estimation.These findings provide insights into the behavior of farmers in adopting RMS which are helpful for policymakers and stakeholders in developing strategies to mitigate the impacts of natural calamities on farmers.展开更多
Objectives:Anastomotic leakage(AL)stands out as a prevalent and severe complication following gastric cancer surgery.It frequently precipitates additional serious complications,significantly influencing the overall su...Objectives:Anastomotic leakage(AL)stands out as a prevalent and severe complication following gastric cancer surgery.It frequently precipitates additional serious complications,significantly influencing the overall survival time of patients.This study aims to enhance the risk-assessment strategy for AL following gastrectomy for gastric cancer.Methods:This study included a derivation cohort and validation cohort.The derivation cohort included patients who underwent radical gastrectomy at Sir Run Run Shaw Hospital,Zhejiang University School of Medicine,from January 1,2015 to December 31,2020.An evidence-based predictor questionnaire was crafted through extensive literature review and panel discussions.Based on the questionnaire,inpatient data were collected to form a model-derivation cohort.This cohort underwent both univariate and multivariate analyses to identify factors associated with AL events,and a logistic regression model with stepwise regression was developed.A 5-fold cross-validation ensured model reliability.The validation cohort included patients from August 1,2021 to December 31,2021 at the same hospital.Using the same imputation method,we organized the validation-queue data.We then employed the risk-prediction model constructed in the earlier phase of the study to predict the risk of AL in the subjects included in the validation queue.We compared the predictions with the actual occurrence,and evaluated the external validation performance of the model using model-evaluation indicators such as the area under the receiver operating characteristic curve(AUROC),Brier score,and calibration curve.Results:The derivation cohort included 1377 patients,and the validation cohort included 131 patients.The independent predictors of AL after radical gastrectomy included age65 y,preoperative albumin<35 g/L,resection extent,operative time240 min,and intraoperative blood loss90 mL.The predictive model exhibited a solid AUROC of 0.750(95%CI:0.694e0.806;p<0.001)with a Brier score of 0.049.The 5-fold cross-validation confirmed these findings with a calibrated C-index of 0.749 and an average Brier score of 0.052.External validation showed an AUROC of 0.723(95%CI:0.564e0.882;p?0.006)and a Brier score of 0.055,confirming reliability in different clinical settings.Conclusions:We successfully developed a risk-prediction model for AL following radical gastrectomy.This tool will aid healthcare professionals in anticipating AL,potentially reducing unnecessary interventions.展开更多
Energy storage batteries can smooth the volatility of renewable energy sources.The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy s...Energy storage batteries can smooth the volatility of renewable energy sources.The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy storage system(BESS).However,the current modeling of grid-connected BESS is overly simplistic,typically only considering state of charge(SOC)and power constraints.Detailed lithium(Li)-ion battery cell models are computationally intensive and impractical for real-time applications and may not be suitable for power grid operating conditions.Additionally,there is a lack of real-time batteries risk assessment frameworks.To address these issues,in this study,we establish a thermal-electric-performance(TEP)coupling model based on a multitime scale BESS model,incorporating the electrical and thermal characteristics of Li-ion batteries along with their performance degradation to achieve detailed simulation of grid-connected BESS.Additionally,considering the operating characteristics of energy storage batteries and electrical and thermal abuse factors,we developed a battery pack operational riskmodel,which takes into account SOCand charge-discharge rate(Cr),using amodified failure rate to represent the BESS risk.By integrating detailed simulation of energy storage with predictive failure risk analysis,we obtained a detailed model for BESS risk analysis.This model offers a multi-time scale integrated simulation that spans month-level energy storage simulation times,day-level performance degradation,minutescale failure rate,and second-level BESS characteristics.It offers a critical tool for the study of BESS.Finally,the performance and risk of energy storage batteries under three scenarios—microgrid energy storage,wind power smoothing,and power grid failure response—are simulated,achieving a real-time state-dependent operational risk analysis of the BESS.展开更多
Consider a nonstandard continuous-time bidimensional risk model with constant force of interest,in which the two classes of claims with subexponential distributions satisfy a general dependence structure and each pair...Consider a nonstandard continuous-time bidimensional risk model with constant force of interest,in which the two classes of claims with subexponential distributions satisfy a general dependence structure and each pair of the claim-inter-arrival times is arbitrarily dependent.Under some mild conditions,we achieve a locally uniform approximation of the finite-time ruin probability for all time horizon within a finite interval.If we further assume that each pair of the claim-inter-arrival times is negative quadrant dependent and the two classes of claims are consistently-varying-tailed,it shows that the above obtained approximation is also globally uniform for all time horizon within an infinite interval.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of cancers worldwide,ranking fifth among men and seventh among women,resulting in more than 7 million deaths annually.With the development of med...BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of cancers worldwide,ranking fifth among men and seventh among women,resulting in more than 7 million deaths annually.With the development of medical tech-nology,the 5-year survival rate of HCC patients can be increased to 70%.How-ever,HCC patients are often at increased risk of cardiovascular disease(CVD)death due to exposure to potentially cardiotoxic treatments compared with non-HCC patients.Moreover,CVD and cancer have become major disease burdens worldwide.Thus,further research is needed to lessen the risk of CVD death in HCC patient survivors.METHODS This study was conducted on the basis of the Surveillance,Epidemiology,and End Results database and included HCC patients with a diagnosis period from 2010 to 2015.The independent risk factors were identified using the Fine-Gray model.A nomograph was constructed to predict the CVM in HCC patients.The nomograph performance was measured using Harrell’s concordance index(C-index),calibration curve,receiver operating characteristic(ROC)curve,and area under the ROC curve(AUC)value.Moreover,the net benefit was estimated via decision curve analysis(DCA).RESULTS The study included 21545 HCC patients,of whom 619 died of CVD.Age(<60)[1.981(1.573-2.496),P<0.001],marital status(married)[unmarried:1.370(1.076-1.745),P=0.011],alpha fetoprotein(normal)[0.778(0.640-0.946),P=0.012],tumor size(≤2 cm)[(2,5]cm:1.420(1.060-1.903),P=0.019;>5 cm:2.090(1.543-2.830),P<0.001],surgery(no)[0.376(0.297-0.476),P<0.001],and chemotherapy(none/unknown)[0.578(0.472-0.709),P<0.001]were independent risk factors for CVD death in HCC patients.The discrimination and calibration of the nomograph were better.The C-index values for the training and validation sets were 0.736 and 0.665,respectively.The AUC values of the ROC curves at 2,4,and 6 years were 0.702,0.725,0.740 in the training set and 0.697,0.710,0.744 in the validation set,respectively.The calibration curves showed that the predicted probab-ilities of the CVM prediction model in the training set vs the validation set were largely consistent with the actual probabilities.DCA demonstrated that the prediction model has a high net benefit.CONCLUSION Risk factors for CVD death in HCC patients were investigated for the first time.The nomograph served as an important reference tool for relevant clinical management decisions.展开更多
BACKGROUND Mucocutaneous separation(MCS)is a common postoperative complication in enterostomy patients,potentially leading to significant morbidity.Early identification of risk factors is crucial for preventing this c...BACKGROUND Mucocutaneous separation(MCS)is a common postoperative complication in enterostomy patients,potentially leading to significant morbidity.Early identification of risk factors is crucial for preventing this condition.However,predictive models for MCS remain underdeveloped.AIM To construct a risk prediction model for MCS in enterostomy patients and assess its clinical predictive accuracy.METHODS A total of 492 patients who underwent enterostomy from January 2019 to March 2023 were included in the study.Patients were divided into two groups,the MCS group(n=110),and the non-MCS(n=382)based on the occurrence of MCS within the first 3 weeks after surgery.Univariate and multivariate analyses were used to identify the independent predictive factors of MCS and the model constructed.Receiver operating characteristic curve analysis was used to assess the model’s performance.RESULTS The postoperative MCS incidence rate was 22.4%.Suture dislodgement(P<0.0001),serum albumin level(P<0.0001),body mass index(BMI)(P=0.0006),hemoglobin level(P=0.0409),intestinal rapture(P=0.0043),incision infection(P<0.0001),neoadjuvant therapy(P=0.0432),stoma site(P=0.0028)and elevated intra-abdominal pressure(P=0.0395)were potential predictive factors of MCS.Suture dislodgement[P<0.0001,OR:28.007595%CI:(11.0901-82.1751)],serum albumin level(P=0.0008,OR:0.3504,95%CI:[0.1902-0.6485]),BMI[P=0.0045,OR:2.1361,95%CI:(1.2660-3.6235)],hemoglobin level[P=0.0269,OR:0.5164,95%CI:(0.2881-0.9324)],intestinal rapture[P=0.0351,OR:3.0694,95%CI:(1.0482-8.5558)],incision infection[P=0.0179,OR:0.2885,95%CI:(0.0950-0.7624)]and neoadjuvant therapy[P=0.0112,OR:1.9769,95%CI:(1.1718-3.3690)]were independent predictive factors and included in the model.The model had an area under the curve of 0.827 and good clinical utility on decision curve analysis.CONCLUSION The mucocutaneous separation prediction model constructed in this study has good predictive performance and can provide a reference for early warning of mucocutaneous separation in enterostomy patients.展开更多
BACKGROUND Major depressive disorder is a common mental illness among adolescents and is the largest disease burden in this age group.Most adolescent patients with depression have suicidal ideation(SI);however,few stu...BACKGROUND Major depressive disorder is a common mental illness among adolescents and is the largest disease burden in this age group.Most adolescent patients with depression have suicidal ideation(SI);however,few studies have focused on the factors related to SI,and effective predictive models are lacking.AIM To construct a risk prediction model for SI in adolescent depression and provide a reference assessment tool for prevention.METHODS The data of 150 adolescent patients with depression at the First People's Hospital of Lianyungang from June 2020 to December 2022 were retrospectively analyzed.Based on whether or not they had SI,they were divided into a SI group(n=91)and a non-SI group(n=59).The general data and laboratory indices of the two groups were compared.Logistic regression was used to analyze the factors influencing SI in adolescent patients with depression,a nomogram prediction model was constructed based on the analysis results,and internal evaluation was performed.Receiver operating characteristic and calibration curves were used to evaluate the model’s efficacy,and the clinical application value was evaluated using decision curve analysis(DCA).RESULTS There were differences in trauma history,triggers,serum ferritin levels(SF),highsensitivity C-reactive protein levels(hs-CRP),and high-density lipoprotein(HDLC)levels between the two groups(P<0.05).Logistic regression analysis showed that trauma history,predisposing factors,SF,hs-CRP,and HDL-C were factors influencing SI in adolescent patients with depression.The area under the curve of the nomogram prediction model was 0.831(95%CI:0.763–0.899),sensitivity was 0.912,and specificity was 0.678.The higher net benefit of the DCA and the average absolute error of the calibration curve were 0.043,indicating that the model had a good fit.CONCLUSION The nomogram prediction model based on trauma history,triggers,ferritin,serum hs-CRP,and HDL-C levels can effectively predict the risk of SI in adolescent patients with depression.展开更多
BACKGROUND Post-stroke infection is the most common complication of stroke and poses a huge threat to patients.In addition to prolonging the hospitalization time and increasing the medical burden,post-stroke infection...BACKGROUND Post-stroke infection is the most common complication of stroke and poses a huge threat to patients.In addition to prolonging the hospitalization time and increasing the medical burden,post-stroke infection also significantly increases the risk of disease and death.Clarifying the risk factors for post-stroke infection in patients with acute ischemic stroke(AIS)is of great significance.It can guide clinical practice to perform corresponding prevention and control work early,minimizing the risk of stroke-related infections and ensuring favorable disease outcomes.AIM To explore the risk factors for post-stroke infection in patients with AIS and to construct a nomogram predictive model.METHODS The clinical data of 206 patients with AIS admitted to our hospital between April 2020 and April 2023 were retrospectively collected.Baseline data and post-stroke infection status of all study subjects were assessed,and the risk factors for poststroke infection in patients with AIS were analyzed.RESULTS Totally,48 patients with AIS developed stroke,with an infection rate of 23.3%.Age,diabetes,disturbance of consciousness,high National Institutes of Health Stroke Scale(NIHSS)score at admission,invasive operation,and chronic obstructive pulmonary disease(COPD)were risk factors for post-stroke infection in patients with AIS(P<0.05).A nomogram prediction model was constructed with a C-index of 0.891,reflecting the good potential clinical efficacy of the nomogram prediction model.The calibration curve also showed good consistency between the actual observations and nomogram predictions.The area under the receiver operating characteristic curve was 0.891(95%confidence interval:0.839–0.942),showing predictive value for post-stroke infection.When the optimal cutoff value was selected,the sensitivity and specificity were 87.5%and 79.7%,respectively.CONCLUSION Age,diabetes,disturbance of consciousness,NIHSS score at admission,invasive surgery,and COPD are risk factors for post-stroke infection following AIS.The nomogram prediction model established based on these factors exhibits high discrimination and accuracy.展开更多
BACKGROUND Arthritis is a prevalent and debilitating condition that affects a significant proportion of middle-aged and older adults worldwide.Characterized by chronic pain,inflammation,and joint dysfunction,arthritis...BACKGROUND Arthritis is a prevalent and debilitating condition that affects a significant proportion of middle-aged and older adults worldwide.Characterized by chronic pain,inflammation,and joint dysfunction,arthritis can severely impact physical function,quality of life,and mental health.The overall burden of arthritis is further compounded in this population due to its frequent association with depression.As the global population both the prevalence and severity of arthritis are anticipated to increase.AIM To investigate depressive symptoms in the middle-aged and elderly arthritic population in China,a risk prediction model was constructed,and its effectiveness was validated.METHODS Using the China Health and Retirement Longitudinal Study 2018 data on middleaged and elderly arthritic individuals,the population was randomly divided into a training set(n=4349)and a validation set(n=1862)at a 7:3 ratio.Based on 10-fold cross-validation,least absolute shrinkage and selection regression was used to screen the model for the best predictor variables.Logistic regression was used to construct the nomogram model.Subject receiver operating characteristic and calibration curves were used to determine model differentiation and accuracy.Decision curve analysis was used to assess the net clinical benefit.RESULTS The prevalence of depressive symptoms in the middle-aged and elderly arthritis population in China was 47.1%,multifactorial logistic regression analyses revealed that gender,age,number of chronic diseases,number of pain sites,nighttime sleep time,education,audiological status,health status,and place of residence were all predictors of depressive symptoms.The area under the curve values for the training and validation sets were 0.740(95%confidence interval:0.726-0.755)and 0.731(95%confidence interval:0.709-0.754),respectively,indicating good model differentiation.The calibration curves demonstrated good prediction accuracy,and the decision curve analysis curves demonstrated good clinical utility.CONCLUSION The risk prediction model developed in this study has strong predictive performance and is useful for screening and assessing depression symptoms in middle-aged and elderly arthritis patients.展开更多
Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable c...Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable centralized traffic control(CTC)system risk assessment method.Design/methodologylapproach-First,system-theoretic process analysis(STPA)is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis.Then,to enhance the accuracy of weight calculation,the fuzzy analytical hierarchy process(FAHP),fuzzy decision-making trial and evaluation laboratory(FDEMATEL)and entropy weight method are employed to calculate the subjective weight,relative weight and objective weight of each index.These three types of weights are combined using game theory to obtain the combined weight for each index.To reduce subjectivity and uncertainty in the assessment process,the backward cloud generator method is utilized to obtain the numerical character(NC)of the cloud model for each index.The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system.This cloud model is used to obtain the CTC system's comprehensive risk assessment.The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud.Finally,this process yields the risk assessment results for the CTC system.Findings-The cloud model can handle the subjectivity and fuzziness in the risk assessment process well.The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.Originality/value-This study provides a cloud model-based method for risk assessment of CTC systems,which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment,achieving effective risk assessment of CTC systems.It can provide a reference and theoretical basis for risk management of the CTC system.展开更多
BACKGROUND Gallbladder cancer(GBC)is the most common malignant tumor of the biliary system,and is often undetected until advanced stages,making curative surgery unfeasible for many patients.Curative surgery remains th...BACKGROUND Gallbladder cancer(GBC)is the most common malignant tumor of the biliary system,and is often undetected until advanced stages,making curative surgery unfeasible for many patients.Curative surgery remains the only option for long-term survival.Accurate postsurgical prognosis is crucial for effective treatment planning.tumor-node-metastasis staging,which focuses on tumor infiltration,lymph node metastasis,and distant metastasis,limits the accuracy of prognosis.Nomograms offer a more comprehensive and personalized approach by visually analyzing a broader range of prognostic factors,enhancing the precision of treatment planning for patients with GBC.AIM A retrospective study analyzed the clinical and pathological data of 93 patients who underwent radical surgery for GBC at Peking University People's Hospital from January 2015 to December 2020.Kaplan-Meier analysis was used to calculate the 1-,2-and 3-year survival rates.The log-rank test was used to evaluate factors impacting prognosis,with survival curves plotted for significant variables.Single-factor analysis revealed statistically significant differences,and multivariate Cox regression identified independent prognostic factors.A nomogram was developed and validated with receiver operating characteristic curves and calibration curves.Among 93 patients who underwent radical surgery for GBC,30 patients survived,accounting for 32.26%of the sample,with a median survival time of 38 months.The 1-year,2-year,and 3-year survival rates were 83.87%,68.82%,and 53.57%,respectively.Univariate analysis revealed that carbohydrate antigen 19-9 expre-ssion,T stage,lymph node metastasis,histological differentiation,surgical margins,and invasion of the liver,ex-trahepatic bile duct,nerves,and vessels(P≤0.001)significantly impacted patient prognosis after curative surgery.Multivariate Cox regression identified lymph node metastasis(P=0.03),histological differentiation(P<0.05),nerve invasion(P=0.036),and extrahepatic bile duct invasion(P=0.014)as independent risk factors.A nomogram model with a concordance index of 0.838 was developed.Internal validation confirmed the model's consistency in predicting the 1-year,2-year,and 3-year survival rates.CONCLUSION Lymph node metastasis,tumor differentiation,extrahepatic bile duct invasion,and perineural invasion are independent risk factors.A nomogram based on these factors can be used to personalize and improve treatment strategies.展开更多
In recent years, West Africa has been confronted with hydro-climatic disasters causing crises in both urban and rural areas. The tragedy in the occurrence of such events lies in the recurrent aspect of high water and ...In recent years, West Africa has been confronted with hydro-climatic disasters causing crises in both urban and rural areas. The tragedy in the occurrence of such events lies in the recurrent aspect of high water and associated floods. The devastating floods observed in Africa’s major rivers have revealed the need to understand the causes of these phenomena and to predict their behavior in order to improve the safety of exposed people and property. The aim of this study is to reproduce flood flows using the GR4J (Rural Engineering Four Daily Parameters) model to analyze flood risk in the Oti watershed in Togo. Daily data on flows (m3/s), potential evapotranspiration (mm/day) and average precipitation (mm) over the basin from 1961-2022 collected at the National Meteorological Agency of Togo (ANAMET) and the Department of Water Resources in Lome, were used with the R software package airGR. The Data from the West African Cordex program from 1961-2100 were used to analyze projected flows. The results obtained show the GR4J model’s effectiveness in reproducing flood flows, indicating that observed flows are well simulated during the calibration and validation periods, with KGE values ranging from 0.73 to 0.85 at calibration and 0.62 to 0.81 at validation. These KGE values reflect the good performance of the GR4J model in simulating flood flows in the watershed. However, a deterioration in the KGE value was observed over the second validation period. Under these conditions, there may be false or missed alerts for flood prediction, and the use of this model should be treated with the utmost caution for decision-support purposes.展开更多
Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of tra...Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of traditional Machine Learning (ML) and Deep Learning (DL) models in predicting CVD risk, utilizing a meticulously curated dataset derived from health records. Rigorous preprocessing, including normalization and outlier removal, enhances model robustness. Diverse ML models (Logistic Regression, Random Forest, Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Gradient Boosting) are compared with a Long Short-Term Memory (LSTM) neural network for DL. Evaluation metrics include accuracy, ROC AUC, computation time, and memory usage. Results identify the Gradient Boosting Classifier and LSTM as top performers, demonstrating high accuracy and ROC AUC scores. Comparative analyses highlight model strengths and limitations, contributing valuable insights for optimizing predictive strategies. This study advances predictive analytics for cardiovascular health, with implications for personalized medicine. The findings underscore the versatility of intelligent systems in addressing health challenges, emphasizing the broader applications of ML and DL in disease identification beyond cardiovascular health.展开更多
Objective:To construct a risk prediction model for fall in patients with maintenance hemodialysis(MHD)and to verify the prediction effect of the model.Methods:From June 2020 to December 2020,307 patients who underwent...Objective:To construct a risk prediction model for fall in patients with maintenance hemodialysis(MHD)and to verify the prediction effect of the model.Methods:From June 2020 to December 2020,307 patients who underwent MHD in a tertiary hospital in Chengdu were divided into a fall group(32 cases)and a non-fall group(275 cases).Logistic regression analysis model was used to establish the influencing factors of the subjects.Hosmer–Lemeshow and receiver operating characteristic(ROC)curve were used to test the goodness of fit and predictive effect of the model,and 104 patients were again included in the application research of the model.Results:The risk factors for fall were history of falls in the past year(OR=3.951),dialysis-related hypotension(OR=6.949),time up and go(TUG)test(OR=4.630),serum albumin(OR=0.661),frailty(OR=7.770),and fasting blood glucose(OR=1.141).Hosmer–Lemeshow test was P=0.475;the area under the ROC curve was 0.907;the Youden index was 0.642;the sensitivity was 0.843;and the specificity was 0.799.Conclusions:The risk prediction model constructed in this study has a good effect and can provide references for clinical screening of fall risks in patients with MHD.展开更多
BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized p...BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients.展开更多
The application model of epidemic disease assessment technology for Web-based large-scale pig farm was expounded from the identification of epidemic disease risk factors, construction of risk assessment model and deve...The application model of epidemic disease assessment technology for Web-based large-scale pig farm was expounded from the identification of epidemic disease risk factors, construction of risk assessment model and development of risk assessment system. The assessed pig farm uploaded the epidemic disease risk data information through on-line answering evaluating questionnaire to get the immediate evaluation report. The model could enhance the risk communication between pig farm veterinarian, manager and veterinary experts to help farm system understand and find disease risk factors, assess and report the potential high risk items of the pig farm in the three systems of engineering epidemic disease prevention technology, biological safety and immune monitoring, and promote the improvement and perfection of epidemic disease prevention and control measures.展开更多
Consider two dependent renewal risk models with constant interest rate. By using some methods in the risk theory, uniform asymptotics for finite-time ruin probability is derived in a non-compound risk model, where cla...Consider two dependent renewal risk models with constant interest rate. By using some methods in the risk theory, uniform asymptotics for finite-time ruin probability is derived in a non-compound risk model, where claim sizes are upper tail asymptotically independent random variables with dominatedly varying tails, claim inter-arrival times follow the widely lower orthant dependent structure, and the total amount of premiums is a nonnegative stochastic process. Based on the obtained result, using the method of analysis for the tail probability of random sums, a similar result in a more complex and reasonable compound risk model is also obtained, where individual claim sizes are specialized to be extended negatively dependent and accident inter-arrival times are still widely lower orthant dependent, and both the claim sizes and the claim number have dominatedly varying tails.展开更多
Internationally earthquake insurance,like all other insurance (fire,auto),adopted actuarial approach in the past, which is,based on historical loss experience to determine insurance rate.Due to the fact that earthquak...Internationally earthquake insurance,like all other insurance (fire,auto),adopted actuarial approach in the past, which is,based on historical loss experience to determine insurance rate.Due to the fact that earthquake is a rare event with severe consequence,irrational determination of premium rate and lack of understanding scale of potential loss led to many insurance companies insolvent after Northridge earthquake in 1994. Along with recent advances in earth science,computer science and engineering,computerized loss estimation methodologies based on first principles have been developed to the point that losses from destructive earthquakes can be quantified with reasonable accuracy using scientific modeling techniques. This paper intends to introduce how engineering models can assist to quantify earthquake risk and how insurance industry can use this information to manage their risk in the United States and abroad.展开更多
文摘BACKGROUND Liver transplantation aims to increase the survival of patients with end-stage liver diseases and improve their quality of life.The number of organs available for transplantation is lower than the demand.To provide fair organ distribution,predictive mortality scores have been developed.AIM To compare the Acute Physiology and Chronic Health Evaluation IV(APACHE IV),balance of risk(BAR),and model for end-stage liver disease(MELD)scores as predictors of mortality.METHODS Retrospective cohort study,which included 283 adult patients in the postoperative period of deceased donor liver transplantation from 2014 to 2018.RESULTS The transplant recipients were mainly male,with a mean age of 58.1 years.Donors were mostly male,with a mean age of 41.6 years.The median cold ischemia time was 3.1 hours,and the median intensive care unit stay was 5 days.For APACHE IV,a mean of 59.6 was found,BAR 10.7,and MELD 24.2.The 28-day mortality rate was 9.5%,and at 90 days,it was 3.5%.The 28-day mortality prediction for APACHE IV was very good[area under the curve(AUC):0.85,P<0.001,95%CI:0.76-0.94],P<0.001,BAR(AUC:0.70,P<0.001,95%CI:0.58–0.81),and MELD(AUC:0.66,P<0.006,95%CI:0.55-0.78),P<0.008.At 90 days,the data for APACHE IV were very good(AUC:0.80,P<0.001,95%CI:0.71–0.90)and moderate for BAR and MELD,respectively,(AUC:0.66,P<0.004,95%CI:0.55–0.77),(AUC:0.62,P<0.026,95%CI:0.51–0.72).All showed good discrimination between deaths and survivors.As for the best value for liver transplantation,it was significant only for APACHE IV(P<0.001).CONCLUSION The APACHE IV assessment score was more accurate than BAR and MELD in predicting mortality in deceased donor liver transplant recipients.
文摘BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.
文摘This study investigates the factors that impact farmers'adoption of risk management strategies(RMS)in Pakistan during times of uncertainty.The study examines farmers'adoption of RMS using both multinomial probit(MNP)and multivariate probit(MVP).Data were collected from 382 farmers sampled from four districts in KhyberPakhtunkhwa(KP)province of Pakistan via a multistage sampling technique.This study utilizes the MNP model,considering the assumption of Independence of Irrelevant Alternatives(IIA)and incorporating correlated error terms.The objective is to understand farmers'behavior in risky situations and determine if there is heterogeneity.Results are compared with the MVP model to assess robustness and gain deeper understanding of farmers'decisionmaking processes.The research findings reveal that our results are robust,and farmers behave homogeneously in various RMS scenarios.Farmers adopt RMS individually or in combination to mitigate the adverse effects of natural calamities on their livelihood.The risk-averse farmers,who perceive weather-related risks as a threat,access credits and information,and have farms close to a river are more likely to adopt RMS,irrespective of the format of the strategies available.Moreover,the predicted probabilities and correlation of the RMS and RM categories have strengthened our model estimation.These findings provide insights into the behavior of farmers in adopting RMS which are helpful for policymakers and stakeholders in developing strategies to mitigate the impacts of natural calamities on farmers.
基金This workwas supported by the Medical and Health Science and Technology Project of Zhejiang Province(No.2021KY180).
文摘Objectives:Anastomotic leakage(AL)stands out as a prevalent and severe complication following gastric cancer surgery.It frequently precipitates additional serious complications,significantly influencing the overall survival time of patients.This study aims to enhance the risk-assessment strategy for AL following gastrectomy for gastric cancer.Methods:This study included a derivation cohort and validation cohort.The derivation cohort included patients who underwent radical gastrectomy at Sir Run Run Shaw Hospital,Zhejiang University School of Medicine,from January 1,2015 to December 31,2020.An evidence-based predictor questionnaire was crafted through extensive literature review and panel discussions.Based on the questionnaire,inpatient data were collected to form a model-derivation cohort.This cohort underwent both univariate and multivariate analyses to identify factors associated with AL events,and a logistic regression model with stepwise regression was developed.A 5-fold cross-validation ensured model reliability.The validation cohort included patients from August 1,2021 to December 31,2021 at the same hospital.Using the same imputation method,we organized the validation-queue data.We then employed the risk-prediction model constructed in the earlier phase of the study to predict the risk of AL in the subjects included in the validation queue.We compared the predictions with the actual occurrence,and evaluated the external validation performance of the model using model-evaluation indicators such as the area under the receiver operating characteristic curve(AUROC),Brier score,and calibration curve.Results:The derivation cohort included 1377 patients,and the validation cohort included 131 patients.The independent predictors of AL after radical gastrectomy included age65 y,preoperative albumin<35 g/L,resection extent,operative time240 min,and intraoperative blood loss90 mL.The predictive model exhibited a solid AUROC of 0.750(95%CI:0.694e0.806;p<0.001)with a Brier score of 0.049.The 5-fold cross-validation confirmed these findings with a calibrated C-index of 0.749 and an average Brier score of 0.052.External validation showed an AUROC of 0.723(95%CI:0.564e0.882;p?0.006)and a Brier score of 0.055,confirming reliability in different clinical settings.Conclusions:We successfully developed a risk-prediction model for AL following radical gastrectomy.This tool will aid healthcare professionals in anticipating AL,potentially reducing unnecessary interventions.
基金Supported by Open Fund of National Key Laboratory of Power Grid Safety(No.XTB51202301386).
文摘Energy storage batteries can smooth the volatility of renewable energy sources.The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy storage system(BESS).However,the current modeling of grid-connected BESS is overly simplistic,typically only considering state of charge(SOC)and power constraints.Detailed lithium(Li)-ion battery cell models are computationally intensive and impractical for real-time applications and may not be suitable for power grid operating conditions.Additionally,there is a lack of real-time batteries risk assessment frameworks.To address these issues,in this study,we establish a thermal-electric-performance(TEP)coupling model based on a multitime scale BESS model,incorporating the electrical and thermal characteristics of Li-ion batteries along with their performance degradation to achieve detailed simulation of grid-connected BESS.Additionally,considering the operating characteristics of energy storage batteries and electrical and thermal abuse factors,we developed a battery pack operational riskmodel,which takes into account SOCand charge-discharge rate(Cr),using amodified failure rate to represent the BESS risk.By integrating detailed simulation of energy storage with predictive failure risk analysis,we obtained a detailed model for BESS risk analysis.This model offers a multi-time scale integrated simulation that spans month-level energy storage simulation times,day-level performance degradation,minutescale failure rate,and second-level BESS characteristics.It offers a critical tool for the study of BESS.Finally,the performance and risk of energy storage batteries under three scenarios—microgrid energy storage,wind power smoothing,and power grid failure response—are simulated,achieving a real-time state-dependent operational risk analysis of the BESS.
基金Supported by the Natural Science Foundation of China(12071487,11671404)the Natural Science Foundation of Anhui Province(2208085MA06)+1 种基金the Provincial Natural Science Research Project of Anhui Colleges(KJ2021A0049,KJ2021A0060)Hunan Provincial Innovation Foundation for Postgraduate(CX20200146)。
文摘Consider a nonstandard continuous-time bidimensional risk model with constant force of interest,in which the two classes of claims with subexponential distributions satisfy a general dependence structure and each pair of the claim-inter-arrival times is arbitrarily dependent.Under some mild conditions,we achieve a locally uniform approximation of the finite-time ruin probability for all time horizon within a finite interval.If we further assume that each pair of the claim-inter-arrival times is negative quadrant dependent and the two classes of claims are consistently-varying-tailed,it shows that the above obtained approximation is also globally uniform for all time horizon within an infinite interval.
基金Health Technology Project of Tianjin,No.ZC20175.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of cancers worldwide,ranking fifth among men and seventh among women,resulting in more than 7 million deaths annually.With the development of medical tech-nology,the 5-year survival rate of HCC patients can be increased to 70%.How-ever,HCC patients are often at increased risk of cardiovascular disease(CVD)death due to exposure to potentially cardiotoxic treatments compared with non-HCC patients.Moreover,CVD and cancer have become major disease burdens worldwide.Thus,further research is needed to lessen the risk of CVD death in HCC patient survivors.METHODS This study was conducted on the basis of the Surveillance,Epidemiology,and End Results database and included HCC patients with a diagnosis period from 2010 to 2015.The independent risk factors were identified using the Fine-Gray model.A nomograph was constructed to predict the CVM in HCC patients.The nomograph performance was measured using Harrell’s concordance index(C-index),calibration curve,receiver operating characteristic(ROC)curve,and area under the ROC curve(AUC)value.Moreover,the net benefit was estimated via decision curve analysis(DCA).RESULTS The study included 21545 HCC patients,of whom 619 died of CVD.Age(<60)[1.981(1.573-2.496),P<0.001],marital status(married)[unmarried:1.370(1.076-1.745),P=0.011],alpha fetoprotein(normal)[0.778(0.640-0.946),P=0.012],tumor size(≤2 cm)[(2,5]cm:1.420(1.060-1.903),P=0.019;>5 cm:2.090(1.543-2.830),P<0.001],surgery(no)[0.376(0.297-0.476),P<0.001],and chemotherapy(none/unknown)[0.578(0.472-0.709),P<0.001]were independent risk factors for CVD death in HCC patients.The discrimination and calibration of the nomograph were better.The C-index values for the training and validation sets were 0.736 and 0.665,respectively.The AUC values of the ROC curves at 2,4,and 6 years were 0.702,0.725,0.740 in the training set and 0.697,0.710,0.744 in the validation set,respectively.The calibration curves showed that the predicted probab-ilities of the CVM prediction model in the training set vs the validation set were largely consistent with the actual probabilities.DCA demonstrated that the prediction model has a high net benefit.CONCLUSION Risk factors for CVD death in HCC patients were investigated for the first time.The nomograph served as an important reference tool for relevant clinical management decisions.
基金Supported by the Zhejiang Province Medical and Health Science and Technology Plan Project,No.2022KY1427.
文摘BACKGROUND Mucocutaneous separation(MCS)is a common postoperative complication in enterostomy patients,potentially leading to significant morbidity.Early identification of risk factors is crucial for preventing this condition.However,predictive models for MCS remain underdeveloped.AIM To construct a risk prediction model for MCS in enterostomy patients and assess its clinical predictive accuracy.METHODS A total of 492 patients who underwent enterostomy from January 2019 to March 2023 were included in the study.Patients were divided into two groups,the MCS group(n=110),and the non-MCS(n=382)based on the occurrence of MCS within the first 3 weeks after surgery.Univariate and multivariate analyses were used to identify the independent predictive factors of MCS and the model constructed.Receiver operating characteristic curve analysis was used to assess the model’s performance.RESULTS The postoperative MCS incidence rate was 22.4%.Suture dislodgement(P<0.0001),serum albumin level(P<0.0001),body mass index(BMI)(P=0.0006),hemoglobin level(P=0.0409),intestinal rapture(P=0.0043),incision infection(P<0.0001),neoadjuvant therapy(P=0.0432),stoma site(P=0.0028)and elevated intra-abdominal pressure(P=0.0395)were potential predictive factors of MCS.Suture dislodgement[P<0.0001,OR:28.007595%CI:(11.0901-82.1751)],serum albumin level(P=0.0008,OR:0.3504,95%CI:[0.1902-0.6485]),BMI[P=0.0045,OR:2.1361,95%CI:(1.2660-3.6235)],hemoglobin level[P=0.0269,OR:0.5164,95%CI:(0.2881-0.9324)],intestinal rapture[P=0.0351,OR:3.0694,95%CI:(1.0482-8.5558)],incision infection[P=0.0179,OR:0.2885,95%CI:(0.0950-0.7624)]and neoadjuvant therapy[P=0.0112,OR:1.9769,95%CI:(1.1718-3.3690)]were independent predictive factors and included in the model.The model had an area under the curve of 0.827 and good clinical utility on decision curve analysis.CONCLUSION The mucocutaneous separation prediction model constructed in this study has good predictive performance and can provide a reference for early warning of mucocutaneous separation in enterostomy patients.
文摘BACKGROUND Major depressive disorder is a common mental illness among adolescents and is the largest disease burden in this age group.Most adolescent patients with depression have suicidal ideation(SI);however,few studies have focused on the factors related to SI,and effective predictive models are lacking.AIM To construct a risk prediction model for SI in adolescent depression and provide a reference assessment tool for prevention.METHODS The data of 150 adolescent patients with depression at the First People's Hospital of Lianyungang from June 2020 to December 2022 were retrospectively analyzed.Based on whether or not they had SI,they were divided into a SI group(n=91)and a non-SI group(n=59).The general data and laboratory indices of the two groups were compared.Logistic regression was used to analyze the factors influencing SI in adolescent patients with depression,a nomogram prediction model was constructed based on the analysis results,and internal evaluation was performed.Receiver operating characteristic and calibration curves were used to evaluate the model’s efficacy,and the clinical application value was evaluated using decision curve analysis(DCA).RESULTS There were differences in trauma history,triggers,serum ferritin levels(SF),highsensitivity C-reactive protein levels(hs-CRP),and high-density lipoprotein(HDLC)levels between the two groups(P<0.05).Logistic regression analysis showed that trauma history,predisposing factors,SF,hs-CRP,and HDL-C were factors influencing SI in adolescent patients with depression.The area under the curve of the nomogram prediction model was 0.831(95%CI:0.763–0.899),sensitivity was 0.912,and specificity was 0.678.The higher net benefit of the DCA and the average absolute error of the calibration curve were 0.043,indicating that the model had a good fit.CONCLUSION The nomogram prediction model based on trauma history,triggers,ferritin,serum hs-CRP,and HDL-C levels can effectively predict the risk of SI in adolescent patients with depression.
基金Shandong Province Grassroots Health Technology Innovation Program Project,No.JCK22007.
文摘BACKGROUND Post-stroke infection is the most common complication of stroke and poses a huge threat to patients.In addition to prolonging the hospitalization time and increasing the medical burden,post-stroke infection also significantly increases the risk of disease and death.Clarifying the risk factors for post-stroke infection in patients with acute ischemic stroke(AIS)is of great significance.It can guide clinical practice to perform corresponding prevention and control work early,minimizing the risk of stroke-related infections and ensuring favorable disease outcomes.AIM To explore the risk factors for post-stroke infection in patients with AIS and to construct a nomogram predictive model.METHODS The clinical data of 206 patients with AIS admitted to our hospital between April 2020 and April 2023 were retrospectively collected.Baseline data and post-stroke infection status of all study subjects were assessed,and the risk factors for poststroke infection in patients with AIS were analyzed.RESULTS Totally,48 patients with AIS developed stroke,with an infection rate of 23.3%.Age,diabetes,disturbance of consciousness,high National Institutes of Health Stroke Scale(NIHSS)score at admission,invasive operation,and chronic obstructive pulmonary disease(COPD)were risk factors for post-stroke infection in patients with AIS(P<0.05).A nomogram prediction model was constructed with a C-index of 0.891,reflecting the good potential clinical efficacy of the nomogram prediction model.The calibration curve also showed good consistency between the actual observations and nomogram predictions.The area under the receiver operating characteristic curve was 0.891(95%confidence interval:0.839–0.942),showing predictive value for post-stroke infection.When the optimal cutoff value was selected,the sensitivity and specificity were 87.5%and 79.7%,respectively.CONCLUSION Age,diabetes,disturbance of consciousness,NIHSS score at admission,invasive surgery,and COPD are risk factors for post-stroke infection following AIS.The nomogram prediction model established based on these factors exhibits high discrimination and accuracy.
基金Supported by the Changning District Health Committee Excellent Innovation Talent Training Project,No.RCJD2022S01.
文摘BACKGROUND Arthritis is a prevalent and debilitating condition that affects a significant proportion of middle-aged and older adults worldwide.Characterized by chronic pain,inflammation,and joint dysfunction,arthritis can severely impact physical function,quality of life,and mental health.The overall burden of arthritis is further compounded in this population due to its frequent association with depression.As the global population both the prevalence and severity of arthritis are anticipated to increase.AIM To investigate depressive symptoms in the middle-aged and elderly arthritic population in China,a risk prediction model was constructed,and its effectiveness was validated.METHODS Using the China Health and Retirement Longitudinal Study 2018 data on middleaged and elderly arthritic individuals,the population was randomly divided into a training set(n=4349)and a validation set(n=1862)at a 7:3 ratio.Based on 10-fold cross-validation,least absolute shrinkage and selection regression was used to screen the model for the best predictor variables.Logistic regression was used to construct the nomogram model.Subject receiver operating characteristic and calibration curves were used to determine model differentiation and accuracy.Decision curve analysis was used to assess the net clinical benefit.RESULTS The prevalence of depressive symptoms in the middle-aged and elderly arthritis population in China was 47.1%,multifactorial logistic regression analyses revealed that gender,age,number of chronic diseases,number of pain sites,nighttime sleep time,education,audiological status,health status,and place of residence were all predictors of depressive symptoms.The area under the curve values for the training and validation sets were 0.740(95%confidence interval:0.726-0.755)and 0.731(95%confidence interval:0.709-0.754),respectively,indicating good model differentiation.The calibration curves demonstrated good prediction accuracy,and the decision curve analysis curves demonstrated good clinical utility.CONCLUSION The risk prediction model developed in this study has strong predictive performance and is useful for screening and assessing depression symptoms in middle-aged and elderly arthritis patients.
基金National Natural Science Foundation of China under Grant 62203468Technological Research and Development Program of China State Railway Group Co.,Ltd.under Grant J2023G007+2 种基金Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)under Grant 2022QNRC001Youth Talent Program Supported by China Railway SocietyResearch Program of Beijing Hua-Tie Information Technology Corporation Limited under Grant 2023HT02.
文摘Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable centralized traffic control(CTC)system risk assessment method.Design/methodologylapproach-First,system-theoretic process analysis(STPA)is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis.Then,to enhance the accuracy of weight calculation,the fuzzy analytical hierarchy process(FAHP),fuzzy decision-making trial and evaluation laboratory(FDEMATEL)and entropy weight method are employed to calculate the subjective weight,relative weight and objective weight of each index.These three types of weights are combined using game theory to obtain the combined weight for each index.To reduce subjectivity and uncertainty in the assessment process,the backward cloud generator method is utilized to obtain the numerical character(NC)of the cloud model for each index.The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system.This cloud model is used to obtain the CTC system's comprehensive risk assessment.The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud.Finally,this process yields the risk assessment results for the CTC system.Findings-The cloud model can handle the subjectivity and fuzziness in the risk assessment process well.The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.Originality/value-This study provides a cloud model-based method for risk assessment of CTC systems,which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment,achieving effective risk assessment of CTC systems.It can provide a reference and theoretical basis for risk management of the CTC system.
基金Supported by Xiao-Ping Chen Foundation for The Development of Science and Technology of Hubei Province,No.CXPJJH122002-061.
文摘BACKGROUND Gallbladder cancer(GBC)is the most common malignant tumor of the biliary system,and is often undetected until advanced stages,making curative surgery unfeasible for many patients.Curative surgery remains the only option for long-term survival.Accurate postsurgical prognosis is crucial for effective treatment planning.tumor-node-metastasis staging,which focuses on tumor infiltration,lymph node metastasis,and distant metastasis,limits the accuracy of prognosis.Nomograms offer a more comprehensive and personalized approach by visually analyzing a broader range of prognostic factors,enhancing the precision of treatment planning for patients with GBC.AIM A retrospective study analyzed the clinical and pathological data of 93 patients who underwent radical surgery for GBC at Peking University People's Hospital from January 2015 to December 2020.Kaplan-Meier analysis was used to calculate the 1-,2-and 3-year survival rates.The log-rank test was used to evaluate factors impacting prognosis,with survival curves plotted for significant variables.Single-factor analysis revealed statistically significant differences,and multivariate Cox regression identified independent prognostic factors.A nomogram was developed and validated with receiver operating characteristic curves and calibration curves.Among 93 patients who underwent radical surgery for GBC,30 patients survived,accounting for 32.26%of the sample,with a median survival time of 38 months.The 1-year,2-year,and 3-year survival rates were 83.87%,68.82%,and 53.57%,respectively.Univariate analysis revealed that carbohydrate antigen 19-9 expre-ssion,T stage,lymph node metastasis,histological differentiation,surgical margins,and invasion of the liver,ex-trahepatic bile duct,nerves,and vessels(P≤0.001)significantly impacted patient prognosis after curative surgery.Multivariate Cox regression identified lymph node metastasis(P=0.03),histological differentiation(P<0.05),nerve invasion(P=0.036),and extrahepatic bile duct invasion(P=0.014)as independent risk factors.A nomogram model with a concordance index of 0.838 was developed.Internal validation confirmed the model's consistency in predicting the 1-year,2-year,and 3-year survival rates.CONCLUSION Lymph node metastasis,tumor differentiation,extrahepatic bile duct invasion,and perineural invasion are independent risk factors.A nomogram based on these factors can be used to personalize and improve treatment strategies.
文摘In recent years, West Africa has been confronted with hydro-climatic disasters causing crises in both urban and rural areas. The tragedy in the occurrence of such events lies in the recurrent aspect of high water and associated floods. The devastating floods observed in Africa’s major rivers have revealed the need to understand the causes of these phenomena and to predict their behavior in order to improve the safety of exposed people and property. The aim of this study is to reproduce flood flows using the GR4J (Rural Engineering Four Daily Parameters) model to analyze flood risk in the Oti watershed in Togo. Daily data on flows (m3/s), potential evapotranspiration (mm/day) and average precipitation (mm) over the basin from 1961-2022 collected at the National Meteorological Agency of Togo (ANAMET) and the Department of Water Resources in Lome, were used with the R software package airGR. The Data from the West African Cordex program from 1961-2100 were used to analyze projected flows. The results obtained show the GR4J model’s effectiveness in reproducing flood flows, indicating that observed flows are well simulated during the calibration and validation periods, with KGE values ranging from 0.73 to 0.85 at calibration and 0.62 to 0.81 at validation. These KGE values reflect the good performance of the GR4J model in simulating flood flows in the watershed. However, a deterioration in the KGE value was observed over the second validation period. Under these conditions, there may be false or missed alerts for flood prediction, and the use of this model should be treated with the utmost caution for decision-support purposes.
文摘Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of traditional Machine Learning (ML) and Deep Learning (DL) models in predicting CVD risk, utilizing a meticulously curated dataset derived from health records. Rigorous preprocessing, including normalization and outlier removal, enhances model robustness. Diverse ML models (Logistic Regression, Random Forest, Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Gradient Boosting) are compared with a Long Short-Term Memory (LSTM) neural network for DL. Evaluation metrics include accuracy, ROC AUC, computation time, and memory usage. Results identify the Gradient Boosting Classifier and LSTM as top performers, demonstrating high accuracy and ROC AUC scores. Comparative analyses highlight model strengths and limitations, contributing valuable insights for optimizing predictive strategies. This study advances predictive analytics for cardiovascular health, with implications for personalized medicine. The findings underscore the versatility of intelligent systems in addressing health challenges, emphasizing the broader applications of ML and DL in disease identification beyond cardiovascular health.
基金supported by Health Commission of Sichuan Province(No.19PJ194)。
文摘Objective:To construct a risk prediction model for fall in patients with maintenance hemodialysis(MHD)and to verify the prediction effect of the model.Methods:From June 2020 to December 2020,307 patients who underwent MHD in a tertiary hospital in Chengdu were divided into a fall group(32 cases)and a non-fall group(275 cases).Logistic regression analysis model was used to establish the influencing factors of the subjects.Hosmer–Lemeshow and receiver operating characteristic(ROC)curve were used to test the goodness of fit and predictive effect of the model,and 104 patients were again included in the application research of the model.Results:The risk factors for fall were history of falls in the past year(OR=3.951),dialysis-related hypotension(OR=6.949),time up and go(TUG)test(OR=4.630),serum albumin(OR=0.661),frailty(OR=7.770),and fasting blood glucose(OR=1.141).Hosmer–Lemeshow test was P=0.475;the area under the ROC curve was 0.907;the Youden index was 0.642;the sensitivity was 0.843;and the specificity was 0.799.Conclusions:The risk prediction model constructed in this study has a good effect and can provide references for clinical screening of fall risks in patients with MHD.
基金Supported by National Natural Science Foundation of China,No.81874390 and No.81573948Shanghai Natural Science Foundation,No.21ZR1464100+1 种基金Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission,No.22S11901700the Shanghai Key Specialty of Traditional Chinese Clinical Medicine,No.shslczdzk01201.
文摘BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients.
基金Supported by the Fund Program of Jiangsu Academy of Agricultural Sciences(6111689)the Planning Program of"the Twelfth Five-year-plan"in National Science and Technology for the Rural Developme+nt in China(2015BAD12B04-1.2)the Fund for Independent Innovation of Agricultural Science and Technology of Jiangsu Province[CX(16)1006]~~
文摘The application model of epidemic disease assessment technology for Web-based large-scale pig farm was expounded from the identification of epidemic disease risk factors, construction of risk assessment model and development of risk assessment system. The assessed pig farm uploaded the epidemic disease risk data information through on-line answering evaluating questionnaire to get the immediate evaluation report. The model could enhance the risk communication between pig farm veterinarian, manager and veterinary experts to help farm system understand and find disease risk factors, assess and report the potential high risk items of the pig farm in the three systems of engineering epidemic disease prevention technology, biological safety and immune monitoring, and promote the improvement and perfection of epidemic disease prevention and control measures.
基金The National Natural Science Foundation of China(No.11001052,11171065,71171046)China Postdoctoral Science Foundation(No.2012M520964)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20131339)the Qing Lan Project of Jiangsu Province
文摘Consider two dependent renewal risk models with constant interest rate. By using some methods in the risk theory, uniform asymptotics for finite-time ruin probability is derived in a non-compound risk model, where claim sizes are upper tail asymptotically independent random variables with dominatedly varying tails, claim inter-arrival times follow the widely lower orthant dependent structure, and the total amount of premiums is a nonnegative stochastic process. Based on the obtained result, using the method of analysis for the tail probability of random sums, a similar result in a more complex and reasonable compound risk model is also obtained, where individual claim sizes are specialized to be extended negatively dependent and accident inter-arrival times are still widely lower orthant dependent, and both the claim sizes and the claim number have dominatedly varying tails.
文摘Internationally earthquake insurance,like all other insurance (fire,auto),adopted actuarial approach in the past, which is,based on historical loss experience to determine insurance rate.Due to the fact that earthquake is a rare event with severe consequence,irrational determination of premium rate and lack of understanding scale of potential loss led to many insurance companies insolvent after Northridge earthquake in 1994. Along with recent advances in earth science,computer science and engineering,computerized loss estimation methodologies based on first principles have been developed to the point that losses from destructive earthquakes can be quantified with reasonable accuracy using scientific modeling techniques. This paper intends to introduce how engineering models can assist to quantify earthquake risk and how insurance industry can use this information to manage their risk in the United States and abroad.