期刊文献+
共找到2,857篇文章
< 1 2 143 >
每页显示 20 50 100
A Survey of Knowledge Graph Construction Using Machine Learning
1
作者 Zhigang Zhao Xiong Luo +1 位作者 Maojian Chen Ling Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期225-257,共33页
Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information ... Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information retrieval,transitioning it from mere string matching to far more sophisticated entity matching.In this transformative process,the advancement of artificial intelligence and intelligent information services is invigorated.Meanwhile,the role ofmachine learningmethod in the construction of KG is important,and these techniques have already achieved initial success.This article embarks on a comprehensive journey through the last strides in the field of KG via machine learning.With a profound amalgamation of cutting-edge research in machine learning,this article undertakes a systematical exploration of KG construction methods in three distinct phases:entity learning,ontology learning,and knowledge reasoning.Especially,a meticulous dissection of machine learningdriven algorithms is conducted,spotlighting their contributions to critical facets such as entity extraction,relation extraction,entity linking,and link prediction.Moreover,this article also provides an analysis of the unresolved challenges and emerging trajectories that beckon within the expansive application of machine learning-fueled,large-scale KG construction. 展开更多
关键词 knowledge graph(KG) semantic network relation extraction entity linking knowledge reasoning
下载PDF
Combining Deep Learning with Knowledge Graph for Design Knowledge Acquisition in Conceptual Product Design
2
作者 Yuexin Huang Suihuai Yu +4 位作者 Jianjie Chu Zhaojing Su Yangfan Cong Hanyu Wang Hao Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期167-200,共34页
The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design.This study proposes a novel method for acquiring design knowledge by combining deep ... The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design.This study proposes a novel method for acquiring design knowledge by combining deep learning with knowledge graph.Specifically,the design knowledge acquisition method utilises the knowledge extraction model to extract design-related entities and relations from fragmentary data,and further constructs the knowledge graph to support design knowledge acquisition for conceptual product design.Moreover,the knowledge extraction model introduces ALBERT to solve memory limitation and communication overhead in the entity extraction module,and uses multi-granularity information to overcome segmentation errors and polysemy ambiguity in the relation extraction module.Experimental comparison verified the effectiveness and accuracy of the proposed knowledge extraction model.The case study demonstrated the feasibility of the knowledge graph construction with real fragmentary porcelain data and showed the capability to provide designers with interconnected and visualised design knowledge. 展开更多
关键词 Conceptual product design design knowledge acquisition knowledge graph entity extraction relation extraction
下载PDF
A new evolutional model for institutional field knowledge flow network
3
作者 Jinzhong Guo Kai Wang +1 位作者 Xueqin Liao Xiaoling Liu 《Journal of Data and Information Science》 CSCD 2024年第1期101-123,共23页
Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose... Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks.Design/Methodology/Approach:The IKM model enhances the preferential attachment and growth observed in scale-free BA networks,while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network.To compare its performance,the BA and DMS models are also employed for simulating the network.Pearson coefficient analysis is conducted on the simulated networks generated by the IKM,BA and DMS models,as well as on the actual network.Findings:The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network.It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm.The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units.Research Limitations:This study has some limitations.Firstly,it primarily focuses on the evolution of knowledge flow networks within the field of physics,neglecting other fields.Additionally,the analysis is based on a specific set of data,which may limit the generalizability of the findings.Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets.Practical Implications:The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions.It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations.The model can aid in optimizing knowledge flow and enhancing collaboration within organizations.Originality/value:This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks.The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions.Moreover,the model has the potential to be applied to other knowledge networks,which are formed by knowledge organizations as node units. 展开更多
关键词 knowledge flow networks Evolutionary mechanism BA model knowledge units
下载PDF
GATiT:An Intelligent Diagnosis Model Based on Graph Attention Network Incorporating Text Representation in Knowledge Reasoning
4
作者 Yu Song Pengcheng Wu +2 位作者 Dongming Dai Mingyu Gui Kunli Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4767-4790,共24页
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me... The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods. 展开更多
关键词 Intelligent diagnosis knowledge graph graph attention network knowledge reasoning
下载PDF
Hyperbolic hierarchical graph attention network for knowledge graph completion
5
作者 XU Hao CHEN Shudong +3 位作者 QI Donglin TONG Da YU Yong CHEN Shuai 《High Technology Letters》 EI CAS 2024年第3期271-279,共9页
Utilizing graph neural networks for knowledge embedding to accomplish the task of knowledge graph completion(KGC)has become an important research area in knowledge graph completion.However,the number of nodes in the k... Utilizing graph neural networks for knowledge embedding to accomplish the task of knowledge graph completion(KGC)has become an important research area in knowledge graph completion.However,the number of nodes in the knowledge graph increases exponentially with the depth of the tree,whereas the distances of nodes in Euclidean space are second-order polynomial distances,whereby knowledge embedding using graph neural networks in Euclidean space will not represent the distances between nodes well.This paper introduces a novel approach called hyperbolic hierarchical graph attention network(H2GAT)to rectify this limitation.Firstly,the paper conducts knowledge representation in the hyperbolic space,effectively mitigating the issue of exponential growth of nodes with tree depth and consequent information loss.Secondly,it introduces a hierarchical graph atten-tion mechanism specifically designed for the hyperbolic space,allowing for enhanced capture of the network structure inherent in the knowledge graph.Finally,the efficacy of the proposed H2GAT model is evaluated on benchmark datasets,namely WN18RR and FB15K-237,thereby validating its effectiveness.The H2GAT model achieved 0.445,0.515,and 0.586 in the Hits@1,Hits@3 and Hits@10 metrics respectively on the WN18RR dataset and 0.243,0.367 and 0.518 on the FB15K-237 dataset.By incorporating hyperbolic space embedding and hierarchical graph attention,the H2GAT model successfully addresses the limitations of existing hyperbolic knowledge embedding models,exhibiting its competence in knowledge graph completion tasks. 展开更多
关键词 hyperbolic space link prediction knowledge graph embedding knowledge graph completion(KGC)
下载PDF
Low-Cost Federated Broad Learning for Privacy-Preserved Knowledge Sharing in the RIS-Aided Internet of Vehicles 被引量:1
6
作者 Xiaoming Yuan Jiahui Chen +4 位作者 Ning Zhang Qiang(John)Ye Changle Li Chunsheng Zhu Xuemin Sherman Shen 《Engineering》 SCIE EI CAS CSCD 2024年第2期178-189,共12页
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency... High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV. 展开更多
关键词 knowledge sharing Internet of Vehicles Federated learning Broad learning Reconfigurable intelligent surfaces Resource allocation
下载PDF
Heterogeneous Image Knowledge Driven Visual Perception 被引量:1
7
作者 Lan Yan Wenbo Zheng Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期255-257,共3页
Dear Editor,This letter is concerned with visual perception closely related to heterogeneous images.Facing the huge challenge brought by different image modalities,we propose a visual perception framework based on het... Dear Editor,This letter is concerned with visual perception closely related to heterogeneous images.Facing the huge challenge brought by different image modalities,we propose a visual perception framework based on heterogeneous image knowledge,i.e.,the domain knowledge associated with specific vision tasks,to better address the corresponding visual perception problems. 展开更多
关键词 VISUAL VISUAL knowledge
下载PDF
A deep learning method based on prior knowledge with dual training for solving FPK equation
8
作者 彭登辉 王神龙 黄元辰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期250-263,共14页
The evolution of the probability density function of a stochastic dynamical system over time can be described by a Fokker–Planck–Kolmogorov(FPK) equation, the solution of which determines the distribution of macrosc... The evolution of the probability density function of a stochastic dynamical system over time can be described by a Fokker–Planck–Kolmogorov(FPK) equation, the solution of which determines the distribution of macroscopic variables in the stochastic dynamic system. Traditional methods for solving these equations often struggle with computational efficiency and scalability, particularly in high-dimensional contexts. To address these challenges, this paper proposes a novel deep learning method based on prior knowledge with dual training to solve the stationary FPK equations. Initially, the neural network is pre-trained through the prior knowledge obtained by Monte Carlo simulation(MCS). Subsequently, the second training phase incorporates the FPK differential operator into the loss function, while a supervisory term consisting of local maximum points is specifically included to mitigate the generation of zero solutions. This dual-training strategy not only expedites convergence but also enhances computational efficiency, making the method well-suited for high-dimensional systems. Numerical examples, including two different two-dimensional(2D), six-dimensional(6D), and eight-dimensional(8D) systems, are conducted to assess the efficacy of the proposed method. The results demonstrate robust performance in terms of both computational speed and accuracy for solving FPK equations in the first three systems. While the method is also applicable to high-dimensional systems, such as 8D, it should be noted that computational efficiency may be marginally compromised due to data volume constraints. 展开更多
关键词 deep learning prior knowledge FPK equation probability density function
下载PDF
RepDNet:A re-parameterization despeckling network for autonomous underwater side-scan sonar imaging with prior-knowledge customized convolution
9
作者 Zhuoyi Li Zhisen Wang +2 位作者 Deshan Chen Tsz Leung Yip Angelo P.Teixeira 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期259-274,共16页
Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging alo... Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency. 展开更多
关键词 Side-scan sonar Sonar image despeckling Domain knowledge RE-PARAMETERIZATION
下载PDF
Survey and Prospect for Applying Knowledge Graph in Enterprise Risk Management
10
作者 Pengjun Li Qixin Zhao +3 位作者 Yingmin Liu Chao Zhong Jinlong Wang Zhihan Lyu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3825-3865,共41页
Enterprise risk management holds significant importance in fostering sustainable growth of businesses and in serving as a critical element for regulatory bodies to uphold market order.Amidst the challenges posed by in... Enterprise risk management holds significant importance in fostering sustainable growth of businesses and in serving as a critical element for regulatory bodies to uphold market order.Amidst the challenges posed by intricate and unpredictable risk factors,knowledge graph technology is effectively driving risk management,leveraging its ability to associate and infer knowledge from diverse sources.This review aims to comprehensively summarize the construction techniques of enterprise risk knowledge graphs and their prominent applications across various business scenarios.Firstly,employing bibliometric methods,the aim is to uncover the developmental trends and current research hotspots within the domain of enterprise risk knowledge graphs.In the succeeding section,systematically delineate the technical methods for knowledge extraction and fusion in the standardized construction process of enterprise risk knowledge graphs.Objectively comparing and summarizing the strengths and weaknesses of each method,we provide recommendations for addressing the existing challenges in the construction process.Subsequently,categorizing the applied research of enterprise risk knowledge graphs based on research hotspots and risk category standards,and furnishing a detailed exposition on the applicability of technical routes and methods.Finally,the future research directions that still need to be explored in enterprise risk knowledge graphs were discussed,and relevant improvement suggestions were proposed.Practitioners and researchers can gain insights into the construction of technical theories and practical guidance of enterprise risk knowledge graphs based on this foundation. 展开更多
关键词 knowledge graph enterprise risk risk identification risk management review
下载PDF
Knowledge, attitudes, and practices regarding Covid-19 and their relationship with Covid-19 booster vaccination status among women with infertility
11
作者 Gita Pratama Mila Maidarti +4 位作者 Kanadi Sumapradja Achmad Kemal Harzif Natasha Talya Kevin Ezekia Irfan Arieqal Hatta Ampri 《Asian pacific Journal of Reproduction》 CAS 2024年第2期68-75,共8页
Objective:To elucidate the relationship among knowledge,attitudes,and practices regarding Covid-19 and their relationship with booster vaccination status among women with infertility.Methods:This questionnaire-based c... Objective:To elucidate the relationship among knowledge,attitudes,and practices regarding Covid-19 and their relationship with booster vaccination status among women with infertility.Methods:This questionnaire-based cross-sectional study was performed online and offline among women with infertility who visited an infertility clinic in Jakarta,Indonesia.We assessed the patient’s knowledge,attitudes,and practices regarding Covid-19 and their relationship with booster vaccination status and sociodemographic profile.Results:A total of 178 subjects participated in this study,and most participants(92.6%)had received booster Covid-19 vaccines.From the questionnaire,74.2%had good knowledge,and 99.4%had good attitudes regarding Covid-19;however,only 57.9%of patients had good practices.A weak positive correlation existed between knowledge and attitudes(r=0.11,P=0.13)and a moderate negative correlation between attitudes and practices(r=-0.44,P=0.56).Participants’knowledge about vaccines and infertility was correlated with booster vaccination status(P=0.04).Academic background(P=0.01)and attitudes(P=0.01)were also correlated with booster vaccination status.The significant determinants of hesitance of receiving Covid-19 booster vaccines were high school education or below(OR=0.08,95%CI 0.02-0.36)and poor practices(OR=0.21,95%CI 0.05-0.95).Conclusions:The majority of the participants had received the Covid-19 booster vaccine and had good knowledge and attitudes but poor practices regarding Covid-19.Most participants had poor knowledge about the relationship between infertility and the Covid-19 vaccine.The general population should be more informed and reminded about practices to prevent Covid-19 and the relationship between vaccination and fertility to increase the number of people who receive Covid-19 booster vaccines. 展开更多
关键词 Covid-19 Booster vaccine INFERTILITY knowledge Attitude Practice Human reproduction PANDEMIC
下载PDF
A cross-sectional study to assess medication safety,knowledge,attitude,and practices regarding nutrition and medication among pregnant women
12
作者 Gauthami R Bipin Shaji +3 位作者 Twinkle MJS Krishnapriya Radhakrishnan Reshma Kolar Juno Jerold Joel 《Asian pacific Journal of Reproduction》 CAS 2024年第3期115-119,共5页
Objective:To assess pregnant women's knowledge,attitude,and practice regarding nutrition and medication usage,analyse the prescribing pattern,and categorize them based on the Food and Drug Administration(FDA)guide... Objective:To assess pregnant women's knowledge,attitude,and practice regarding nutrition and medication usage,analyse the prescribing pattern,and categorize them based on the Food and Drug Administration(FDA)guidelines.Methods:A cross-sectional study was conducted with 264 pregnant women in the obstetrics and gynaecology department of a tertiary care hospital from October 2022 to August 2023.A knowledge,attitude,and practice(KAP)questionnaire was prepared in English language by the researchers and validated by an expert panel consisting of 12 members.The validated questionnaire was then translated into regional languages,Kannada and Malayalam.The reliability of the questionnaire was assessed with test-retest method with a representative sample population of 30 subjects(10 subjects for each language).The subjects'knowledge,attitude,and practice were evaluated using the validated KAP questionnaire.The safety of the medication was assessed using the FDA drug safety classification for pregnancy.Results:The mean scores for nutritional and medication usage knowledge,attitude,and practice were 4.14±1.15,4.50±1.09,and 3.00±1.47,respectively.Among 30 prescribed medications,3 belong to category A(no risk in human studies),8 belong to category B(no risk in animal studies),18 belong to category C(risk cannot be ruled out)and 1 drug is not classified.A significant association was observed between medication knowledge and practice(r=0.159,P=0.010).Conclusions:Most of the study population knows the need to maintain good dietary and medication practices during pregnancy.Counselling pregnant women regarding diet and medication usage is crucial in maternal care. 展开更多
关键词 PREGNANCY NUTRITION MEDICATION knowledge Practice Safe medication
下载PDF
Global systematic review and meta-analysis of knowledge, attitudes, and practices towards dengue fever among the general population
13
作者 Abdolreza Sotoodeh Jahromi Mohammad Jokar +3 位作者 Arman Abdous Nader Sharifi Tahere Abbasi Vahid Rahmanian 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2024年第5期191-207,I0001-I0003,共20页
Objective:To determine the global level of knowledge,attitudes,and practices towards dengue fever among the general population.Methods:To complete this systematic review and meta-analysis,a thorough search for pertine... Objective:To determine the global level of knowledge,attitudes,and practices towards dengue fever among the general population.Methods:To complete this systematic review and meta-analysis,a thorough search for pertinent English-language literature was undertaken during the study's extension until October 2023.The search used Google Scholar,Scopus,PubMed/MEDLINE,Science Direct,Web of Science,EMBASE,Springer,and ProQuest.A quality assessment checklist developed using a modified Newcastle-Ottawa Scale for the cross-sectional study was used to evaluate the risk of bias in the included papers.Inverse variance and Cochran Q statistics were employed in the STATA software version 14 to assess study heterogeneity.When there was heterogeneity,the Dersimonian and Liard random-effects models were used.Results:59 Studies totaling 87353 participants were included in this meta-analysis.These investigations included 86278 participants in 55 studies on knowledge,20196 in 33 studies on attitudes,and 74881 in 29 studies on practices.The pooled estimates for sufficient knowledge,positive attitudes,and dengue fever preventive behaviors among the general population were determined as 40.1%(95%CI 33.8%-46.5%),46.8%(95%CI 35.8%-58.9%),and 38.3%(95%CI 28.4%-48.2%),respectively.Europe exhibits the highest knowledge level at 63.5%,and Africa shows the lowest at 20.3%.Positive attitudes are most prevalent in the Eastern Mediterranean(54.1%)and Southeast Asia(53.6%),contrasting sharply with the Americas,where attitudes are notably lower at 9.05%.Regarding preventive behaviors,the Americas demonstrate a prevalence of 12.1%,Southeast Asia at 28.1%,Western Pacific at 49.6%,Eastern Mediterranean at 44.8%,and Africa at 47.4%.Conclusions:Regional disparities about the knowledge,attitude and preventive bahaviors are evident with Europe exhibiting the highest knowledge level while Africa has the lowest.These findings emphasize the importance of targeted public health interventions tailored to regional contexts,highlighting the need for region-specific strategies to enhance dengue-related knowledge and encourage positive attitudes and preventive behaviors. 展开更多
关键词 Break-bone fever knowledge ATTITUDES PRACTICES
下载PDF
KGTLIR:An Air Target Intention Recognition Model Based on Knowledge Graph and Deep Learning
14
作者 Bo Cao Qinghua Xing +2 位作者 Longyue Li Huaixi Xing Zhanfu Song 《Computers, Materials & Continua》 SCIE EI 2024年第7期1251-1275,共25页
As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in ... As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in intention recognition,this paper designs an air target intention recognition method(KGTLIR)based on Knowledge Graph and Deep Learning.Firstly,the intention recognition model based on Deep Learning is constructed to mine the temporal relationship of intention features using dilated causal convolution and the spatial relationship of intention features using a graph attention mechanism.Meanwhile,the accuracy,recall,and F1-score after iteration are introduced to dynamically adjust the sample weights to reduce the probability of misclassification.After that,an intention recognition model based on Knowledge Graph is constructed to predict the probability of the occurrence of different intentions of the target.Finally,the results of the two models are fused by evidence theory to obtain the target’s operational intention.Experiments show that the intention recognition accuracy of the KGTLIRmodel can reach 98.48%,which is not only better than most of the air target intention recognition methods,but also demonstrates better interpretability and trustworthiness. 展开更多
关键词 Dilated causal convolution graph attention mechanism intention recognition air targets knowledge graph
下载PDF
A Novel Tensor Decomposition-Based Efficient Detector for Low-Altitude Aerial Objects With Knowledge Distillation Scheme
15
作者 Nianyin Zeng Xinyu Li +2 位作者 Peishu Wu Han Li Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期487-501,共15页
Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computati... Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation. 展开更多
关键词 Attention mechanism knowledge distillation(KD) object detection tensor decomposition(TD) unmanned aerial vehicles(UAVs)
下载PDF
Knowledge Reasoning Method Based on Deep Transfer Reinforcement Learning:DTRLpath
16
作者 Shiming Lin Ling Ye +4 位作者 Yijie Zhuang Lingyun Lu Shaoqiu Zheng Chenxi Huang Ng Yin Kwee 《Computers, Materials & Continua》 SCIE EI 2024年第7期299-317,共19页
In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring mi... In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks. 展开更多
关键词 Intelligent agent knowledge graph reasoning REINFORCEMENT transfer learning
下载PDF
Reflective practice and knowledge development: Transforming research for a practice-based discipline
17
作者 Gwen Sherwood 《International Journal of Nursing Sciences》 CSCD 2024年第4期399-404,共6页
Knowledge development to guide evidence-informed practice is a cornerstone of nursing as a practice-based discipline.The emphasis on empirical knowledge development overshadows other ways of knowledge developmentdpers... Knowledge development to guide evidence-informed practice is a cornerstone of nursing as a practice-based discipline.The emphasis on empirical knowledge development overshadows other ways of knowledge developmentdpersonal,aesthetic,and ethical.Technical,objective knowledge development is more dominant than knowledge development for delivering holistic,personcentered care.Personal,aesthetic,and ethical ways of knowing are essential factors in satisfying work environments,patient satisfaction,and nurse retention.Boyer's model of scholarship development defining the scholarship of discovery,teaching,application,and integration guide nurses in building programs of scholarship informing the practice of nursing in practice and academia with an aim of improving and transforming healthcare delivery and patient outcomes.The purpose of this paper is to describe the various forms of scholarship described by Boyer as priorities in knowledge development,examine how the multiple ways of knowing expand traditional empirical perspectives of knowledge development,and present the value of reflective practices that undergird knowledge generation,integration,and application for holistic personcentered safe quality care.Reflective practices have a unique contribution to forming the unique art and science of nursing as a practice-based discipline. 展开更多
关键词 NURSE knowledge CORNERS
下载PDF
Multi-modal knowledge graph inference via media convergence and logic rule
18
作者 Feng Lin Dongmei Li +5 位作者 Wenbin Zhang Dongsheng Shi Yuanzhou Jiao Qianzhong Chen Yiying Lin Wentao Zhu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期211-221,共11页
Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the intro... Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the introduction of a large amount of information from other modalities reduces the effectiveness of representation learning and makes knowledge graph inference less effective.To address the issue,an inference method based on Media Convergence and Rule-guided Joint Inference model(MCRJI)has been pro-posed.The authors not only converge multi-media features of entities but also introduce logic rules to improve the accuracy and interpretability of link prediction.First,a multi-headed self-attention approach is used to obtain the attention of different media features of entities during semantic synthesis.Second,logic rules of different lengths are mined from knowledge graph to learn new entity representations.Finally,knowledge graph inference is performed based on representing entities that converge multi-media features.Numerous experimental results show that MCRJI outperforms other advanced baselines in using multi-media features and knowledge graph inference,demonstrating that MCRJI provides an excellent approach for knowledge graph inference with converged multi-media features. 展开更多
关键词 logic rule media convergence multi-modal knowledge graph inference representation learning
下载PDF
Identification of partial differential equations from noisy data with integrated knowledge discovery and embedding using evolutionary neural networks
19
作者 Hanyu Zhou Haochen Li Yaomin Zhao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期90-97,共8页
Identification of underlying partial differential equations(PDEs)for complex systems remains a formidable challenge.In the present study,a robust PDE identification method is proposed,demonstrating the ability to extr... Identification of underlying partial differential equations(PDEs)for complex systems remains a formidable challenge.In the present study,a robust PDE identification method is proposed,demonstrating the ability to extract accurate governing equations under noisy conditions without prior knowledge.Specifically,the proposed method combines gene expression programming,one type of evolutionary algorithm capable of generating unseen terms based solely on basic operators and functional terms,with symbolic regression neural networks.These networks are designed to represent explicit functional expressions and optimize them with data gradients.In particular,the specifically designed neural networks can be easily transformed to physical constraints for the training data,embedding the discovered PDEs to further optimize the metadata used for iterative PDE identification.The proposed method has been tested in four canonical PDE cases,validating its effectiveness without preliminary information and confirming its suitability for practical applications across various noise levels. 展开更多
关键词 PDE discovery Gene Expression Programming Deep Learning knowledge embedding
下载PDF
Differentially Private Support Vector Machines with Knowledge Aggregation
20
作者 Teng Wang Yao Zhang +2 位作者 Jiangguo Liang Shuai Wang Shuanggen Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3891-3907,共17页
With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most... With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most elementary learning models of machine learning.Privacy issues surrounding SVM classifier training have attracted increasing attention.In this paper,we investigate Differential Privacy-compliant Federated Machine Learning with Dimensionality Reduction,called FedDPDR-DPML,which greatly improves data utility while providing strong privacy guarantees.Considering in distributed learning scenarios,multiple participants usually hold unbalanced or small amounts of data.Therefore,FedDPDR-DPML enables multiple participants to collaboratively learn a global model based on weighted model averaging and knowledge aggregation and then the server distributes the global model to each participant to improve local data utility.Aiming at high-dimensional data,we adopt differential privacy in both the principal component analysis(PCA)-based dimensionality reduction phase and SVM classifiers training phase,which improves model accuracy while achieving strict differential privacy protection.Besides,we train Differential privacy(DP)-compliant SVM classifiers by adding noise to the objective function itself,thus leading to better data utility.Extensive experiments on three high-dimensional datasets demonstrate that FedDPDR-DPML can achieve high accuracy while ensuring strong privacy protection. 展开更多
关键词 Differential privacy support vector machine knowledge aggregation data utility
下载PDF
上一页 1 2 143 下一页 到第
使用帮助 返回顶部