期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Knowledge Graph based Mutual Attention for Machine Reading Comprehension over Anti-Terrorism Corpus 被引量:1
1
作者 Feng Gao Jin Hou +1 位作者 Jinguang Gu Lihua Zhang 《Data Intelligence》 EI 2023年第3期685-706,共22页
Machine reading comprehension has been a research focus in natural language processing and intelligence engineering.However,there is a lack of models and datasets for the MRC tasks in the anti-terrorism domain.Moreove... Machine reading comprehension has been a research focus in natural language processing and intelligence engineering.However,there is a lack of models and datasets for the MRC tasks in the anti-terrorism domain.Moreover,current research lacks the ability to embed accurate background knowledge and provide precise answers.To address these two problems,this paper first builds a text corpus and testbed that focuses on the anti-terrorism domain in a semi-automatic manner.Then,it proposes a knowledge-based machine reading comprehension model that fuses domain-related triples from a large-scale encyclopedic knowledge base to enhance the semantics of the text.To eliminate knowledge noise that could lead to semantic deviation,this paper uses a mixed mutual ttention mechanism among questions,passages,and knowledge triples to select the most relevant triples before embedding their semantics into the sentences.Experiment results indicate that the proposed approach can achieve a 70.70%EM value and an 87.91%F1 score,with a 4.23%and 3.35%improvement over existing methods,respectively. 展开更多
关键词 Machine reading comprehension Anti-terrorism domain knowledge embedding knowledge attention Mutual attention
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部