In order to reduce the computational and spatial complexity in rerunning algorithm of sequential patterns query, this paper proposes sequential patterns based and projection database based algorithm for fast interacti...In order to reduce the computational and spatial complexity in rerunning algorithm of sequential patterns query, this paper proposes sequential patterns based and projection database based algorithm for fast interactive sequential patterns mining algorithm (FISP), in which the number of frequent items of the projection databases constructed by the correct mining which based on the previously mined sequences has been reduced. Furthermore, the algorithm's iterative running times are reduced greatly by using global-threshold. The results of experiments testify that FISP outperforms PrefixSpan in interactive mining展开更多
Mining sequential patterns from large databases has been recognized by many researchers as an attractive task of data mining and knowledge dis- covery. Previous algorithms scan the databases for many times, which is ...Mining sequential patterns from large databases has been recognized by many researchers as an attractive task of data mining and knowledge dis- covery. Previous algorithms scan the databases for many times, which is often unendurable due to the very large amount of databases. In this paper, the authors introduce an effective algorithm for mining sequential patterns from large databases. In the algorithm, the original database is not used at all for counting the support of sequences after the first pass. Rather, a tidlist structure generated in the Previous pass is employed for the purpose based on set intersection operations, avoiding the multiple scans of the databases.展开更多
Sequential pattern mining is an important data mining problem with broadapplications. However, it is also a challenging problem since the mining may have to generate orexamine a combinatorially explosive number of int...Sequential pattern mining is an important data mining problem with broadapplications. However, it is also a challenging problem since the mining may have to generate orexamine a combinatorially explosive number of intermediate subsequences. Recent studies havedeveloped two major classes of sequential pattern mining methods: (1) a candidategeneration-and-test approach, represented by (ⅰ) GSP, a horizontal format-based sequential patternmining method, and (ⅱ) SPADE, a vertical format-based method; and (2) a pattern-growth method,represented by PrefixSpan and its further extensions, such as gSpan for mining structured patterns.In this study, we perform a systematic introduction and presentation of the pattern-growthmethodology and study its principles and extensions. We first introduce two interestingpattern-growth algorithms, FreeSpan and PrefixSpan, for efficient sequential pattern mining. Then weintroduce gSpan for mining structured patterns using the same methodology. Their relativeperformance in large databases is presented and analyzed. Several extensions of these methods arealso discussed in the paper, including mining multi-level, multi-dimensional patterns and miningconstraint-based patterns.展开更多
Data mining is a powerful emerging technology that helps to extract hidden information from a huge volume of historical data. This paper is concerned with finding the frequent trajectories of moving objects in spatio-...Data mining is a powerful emerging technology that helps to extract hidden information from a huge volume of historical data. This paper is concerned with finding the frequent trajectories of moving objects in spatio-temporal data by a novel method adopting the concepts of clustering and sequential pattern mining. The algorithms used logically split the trajectory span area into clusters and then apply the k-means algorithm over this clusters until the squared error minimizes. The new method applies the threshold to obtain active clusters and arranges them in descending order based on number of trajectories passing through. From these active clusters, inter cluster patterns are found by a sequential pattern mining technique. The process is repeated until all the active clusters are linked. The clusters thus linked in sequence are the frequent trajectories. A set of experiments conducted using real datasets shows that the proposed method is relatively five times better than the existing ones. A comparison is made with the results of other algorithms and their variation is analyzed by statistical methods. Further, tests of significance are conducted with ANOVA to find the efficient threshold value for the optimum plot of frequent trajectories. The results are analyzed and found to be superior than the existing ones. This approach may be of relevance in finding alternate paths in busy networks ( congestion control), finding the frequent paths of migratory birds, or even to predict the next level of pattern characteristics in case of time series data with minor alterations and finding the frequent path of balls in certain games.展开更多
Finding correlated sequential patterns in large sequence databases is one of the essential tasks in data mining since a huge number of sequential patterns are usually mined, but it is hard to find sequential patterns ...Finding correlated sequential patterns in large sequence databases is one of the essential tasks in data mining since a huge number of sequential patterns are usually mined, but it is hard to find sequential patterns with the correlation. According to the requirement of real applications, the needed data analysis should be different. In previous mining approaches, after mining the sequential patterns, sequential patterns with the weak affinity are found even with a high minimum support. In this paper, a new framework is suggested for mining weighted support affinity patterns in which an objective measure, sequential ws-confidence is developed to detect correlated sequential patterns with weighted support affinity patterns. To efficiently prune the weak affinity patterns, it is proved that ws-confidence measure satisfies the anti-monotone and cross weighted support properties which can be applied to eliminate sequential patterns with dissimilar weighted support levels. Based on the framework, a weighted support affinity pattern mining algorithm (WSMiner) is suggested. The performance study shows that WSMiner is efficient and scalable for mining weighted support affinity patterns.展开更多
Holistic understanding of wind behaviour over space,time and height is essential for harvesting wind energy application.This study presents a novel approach for mapping frequent wind profile patterns using multidimen...Holistic understanding of wind behaviour over space,time and height is essential for harvesting wind energy application.This study presents a novel approach for mapping frequent wind profile patterns using multidimensional sequential pattern mining(MDSPM).This study is illustrated with a time series of 24 years of European Centre for Medium-Range Weather Forecasts European Reanalysis-Interim gridded(0.125°×0.125°)wind data for the Netherlands every 6 h and at six height levels.The wind data were first transformed into two spatio-temporal sequence databases(for speed and direction,respectively).Then,the Linear time Closed Itemset Miner Sequence algorithm was used to extract the multidimensional sequential patterns,which were then visualized using a 3D wind rose,a circular histogram and a geographical map.These patterns were further analysed to determine their wind shear coefficients and turbulence intensities as well as their spatial overlap with current areas with wind turbines.Our analysis identified four frequent wind profile patterns.One of them highly suitable to harvest wind energy at a height of 128 m and 68.97%of the geographical area covered by this pattern already contains wind turbines.This study shows that the proposed approach is capable of efficiently extracting meaningful patterns from complex spatio-temporal datasets.展开更多
With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data ...With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data mining and knowledge discovery in databases. Several emerging applications in information providing services, such as data warehousing and on-line services over the Internet, also call for various data mining and knowledge discovery techniques to understand user behavior better, to improve the service provided, and to increase the business opportunities. In response to such a demand, this article is to provide a comprehensive survey on the data mining and knowledge discovery techniques developed recently, and introduce some real application systems as well. In conclusion, this article also lists some problems and challenges for further research.展开更多
In this paper, we propose a flexible knowledge representation framework which utilizes Symbolic Regression to learn and mathematical expressions to represent the knowledge to be captured from data. In this approach, l...In this paper, we propose a flexible knowledge representation framework which utilizes Symbolic Regression to learn and mathematical expressions to represent the knowledge to be captured from data. In this approach, learning algorithms are used to generate new insights which can be added to domain knowledge bases supporting again symbolic regression. This is used for the generalization of the well-known regression analysis to fulfill supervised classification. The approach aims to produce a learning model which best separates the class members of a labeled training set. The class boundaries are given by a separation surface which is represented by the level set of a model function. The separation boundary is defined by the respective equation. In our symbolic approach, the learned knowledge model is represented by mathematical formulas and it is composed of an optimum set of expressions of a given superset. We show that this property gives human experts options to gain additional insights into the application domain. Furthermore, the representation in terms of mathematical formulas (e.g., the analytical model and its first and second derivative) adds additional value to the classifier and enables to answer questions, which sub-symbolic classifier approaches cannot. The symbolic representation of the models enables an interpretation by human experts. Existing and previously known expert knowledge can be added to the developed knowledge representation framework or it can be used as constraints. Additionally, the knowledge acquisition framework can be repeated several times. In each step, new insights from the search process can be added to the knowledge base to improve the overall performance of the proposed learning algorithms.展开更多
This paper presents a new efficient algorithm for mining frequent closed itemsets. It enumerates the closed set of frequent itemsets by using a novel compound frequent itemset tree that facilitates fast growth and eff...This paper presents a new efficient algorithm for mining frequent closed itemsets. It enumerates the closed set of frequent itemsets by using a novel compound frequent itemset tree that facilitates fast growth and efficient pruning of search space. It also employs a hybrid approach that adapts search strategies, representations of projected transaction subsets, and projecting methods to the characteristics of the dataset. Efficient local pruning, global subsumption checking, and fast hashing methods are detailed in this paper. The principle that balances the overheads of search space growth and pruning is also discussed. Extensive experimental evaluations on real world and artificial datasets showed that our algorithm outperforms CHARM by a factor of five and is one to three orders of magnitude more efficient than CLOSET and MAFIA.展开更多
针对传统序列模式挖掘(SPM)不考虑模式重复性且忽略各项的效用(单价或利润)与模式长度对用户兴趣度影响的问题,提出一次性条件下top-k高平均效用序列模式挖掘(TOUP)算法。TOUP算法主要包括两个核心步骤:平均效用计算和候选模式生成。首...针对传统序列模式挖掘(SPM)不考虑模式重复性且忽略各项的效用(单价或利润)与模式长度对用户兴趣度影响的问题,提出一次性条件下top-k高平均效用序列模式挖掘(TOUP)算法。TOUP算法主要包括两个核心步骤:平均效用计算和候选模式生成。首先,提出基于各项出现位置与项重复关系数组的CSP(Calculation Support of Pattern)算法计算模式支持度,从而实现模式平均效用的快速计算;其次,采用项集扩展和序列扩展生成候选模式,并提出了最大平均效用上界,基于该上界实现对候选模式的有效剪枝。在5个真实数据集和1个合成数据集上的实验结果表明,相较于TOUP-dfs和HAOP-ms算法,TOUP算法的候选模式数分别降低了38.5%~99.8%和0.9%~77.6%;运行时间分别降低了33.6%~97.1%和57.9%~97.2%。TOUP的算法性能更优,能更高效地挖掘用户感兴趣的模式。展开更多
基金Supported by the National Natural Science Funda-tion of China (70371015) andthe Natural Science Foundation of Jian-gsu Province (BK2004058)
文摘In order to reduce the computational and spatial complexity in rerunning algorithm of sequential patterns query, this paper proposes sequential patterns based and projection database based algorithm for fast interactive sequential patterns mining algorithm (FISP), in which the number of frequent items of the projection databases constructed by the correct mining which based on the previously mined sequences has been reduced. Furthermore, the algorithm's iterative running times are reduced greatly by using global-threshold. The results of experiments testify that FISP outperforms PrefixSpan in interactive mining
文摘Mining sequential patterns from large databases has been recognized by many researchers as an attractive task of data mining and knowledge dis- covery. Previous algorithms scan the databases for many times, which is often unendurable due to the very large amount of databases. In this paper, the authors introduce an effective algorithm for mining sequential patterns from large databases. In the algorithm, the original database is not used at all for counting the support of sequences after the first pass. Rather, a tidlist structure generated in the Previous pass is employed for the purpose based on set intersection operations, avoiding the multiple scans of the databases.
文摘Sequential pattern mining is an important data mining problem with broadapplications. However, it is also a challenging problem since the mining may have to generate orexamine a combinatorially explosive number of intermediate subsequences. Recent studies havedeveloped two major classes of sequential pattern mining methods: (1) a candidategeneration-and-test approach, represented by (ⅰ) GSP, a horizontal format-based sequential patternmining method, and (ⅱ) SPADE, a vertical format-based method; and (2) a pattern-growth method,represented by PrefixSpan and its further extensions, such as gSpan for mining structured patterns.In this study, we perform a systematic introduction and presentation of the pattern-growthmethodology and study its principles and extensions. We first introduce two interestingpattern-growth algorithms, FreeSpan and PrefixSpan, for efficient sequential pattern mining. Then weintroduce gSpan for mining structured patterns using the same methodology. Their relativeperformance in large databases is presented and analyzed. Several extensions of these methods arealso discussed in the paper, including mining multi-level, multi-dimensional patterns and miningconstraint-based patterns.
基金the receipt of research supported by the TATA Consultancy Service's scholarship
文摘Data mining is a powerful emerging technology that helps to extract hidden information from a huge volume of historical data. This paper is concerned with finding the frequent trajectories of moving objects in spatio-temporal data by a novel method adopting the concepts of clustering and sequential pattern mining. The algorithms used logically split the trajectory span area into clusters and then apply the k-means algorithm over this clusters until the squared error minimizes. The new method applies the threshold to obtain active clusters and arranges them in descending order based on number of trajectories passing through. From these active clusters, inter cluster patterns are found by a sequential pattern mining technique. The process is repeated until all the active clusters are linked. The clusters thus linked in sequence are the frequent trajectories. A set of experiments conducted using real datasets shows that the proposed method is relatively five times better than the existing ones. A comparison is made with the results of other algorithms and their variation is analyzed by statistical methods. Further, tests of significance are conducted with ANOVA to find the efficient threshold value for the optimum plot of frequent trajectories. The results are analyzed and found to be superior than the existing ones. This approach may be of relevance in finding alternate paths in busy networks ( congestion control), finding the frequent paths of migratory birds, or even to predict the next level of pattern characteristics in case of time series data with minor alterations and finding the frequent path of balls in certain games.
文摘Finding correlated sequential patterns in large sequence databases is one of the essential tasks in data mining since a huge number of sequential patterns are usually mined, but it is hard to find sequential patterns with the correlation. According to the requirement of real applications, the needed data analysis should be different. In previous mining approaches, after mining the sequential patterns, sequential patterns with the weak affinity are found even with a high minimum support. In this paper, a new framework is suggested for mining weighted support affinity patterns in which an objective measure, sequential ws-confidence is developed to detect correlated sequential patterns with weighted support affinity patterns. To efficiently prune the weak affinity patterns, it is proved that ws-confidence measure satisfies the anti-monotone and cross weighted support properties which can be applied to eliminate sequential patterns with dissimilar weighted support levels. Based on the framework, a weighted support affinity pattern mining algorithm (WSMiner) is suggested. The performance study shows that WSMiner is efficient and scalable for mining weighted support affinity patterns.
基金This work was supported by the Malaysian Ministry of Education(SLAI)and Universiti Teknologi Malaysia(UTM).
文摘Holistic understanding of wind behaviour over space,time and height is essential for harvesting wind energy application.This study presents a novel approach for mapping frequent wind profile patterns using multidimensional sequential pattern mining(MDSPM).This study is illustrated with a time series of 24 years of European Centre for Medium-Range Weather Forecasts European Reanalysis-Interim gridded(0.125°×0.125°)wind data for the Netherlands every 6 h and at six height levels.The wind data were first transformed into two spatio-temporal sequence databases(for speed and direction,respectively).Then,the Linear time Closed Itemset Miner Sequence algorithm was used to extract the multidimensional sequential patterns,which were then visualized using a 3D wind rose,a circular histogram and a geographical map.These patterns were further analysed to determine their wind shear coefficients and turbulence intensities as well as their spatial overlap with current areas with wind turbines.Our analysis identified four frequent wind profile patterns.One of them highly suitable to harvest wind energy at a height of 128 m and 68.97%of the geographical area covered by this pattern already contains wind turbines.This study shows that the proposed approach is capable of efficiently extracting meaningful patterns from complex spatio-temporal datasets.
文摘With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data mining and knowledge discovery in databases. Several emerging applications in information providing services, such as data warehousing and on-line services over the Internet, also call for various data mining and knowledge discovery techniques to understand user behavior better, to improve the service provided, and to increase the business opportunities. In response to such a demand, this article is to provide a comprehensive survey on the data mining and knowledge discovery techniques developed recently, and introduce some real application systems as well. In conclusion, this article also lists some problems and challenges for further research.
文摘In this paper, we propose a flexible knowledge representation framework which utilizes Symbolic Regression to learn and mathematical expressions to represent the knowledge to be captured from data. In this approach, learning algorithms are used to generate new insights which can be added to domain knowledge bases supporting again symbolic regression. This is used for the generalization of the well-known regression analysis to fulfill supervised classification. The approach aims to produce a learning model which best separates the class members of a labeled training set. The class boundaries are given by a separation surface which is represented by the level set of a model function. The separation boundary is defined by the respective equation. In our symbolic approach, the learned knowledge model is represented by mathematical formulas and it is composed of an optimum set of expressions of a given superset. We show that this property gives human experts options to gain additional insights into the application domain. Furthermore, the representation in terms of mathematical formulas (e.g., the analytical model and its first and second derivative) adds additional value to the classifier and enables to answer questions, which sub-symbolic classifier approaches cannot. The symbolic representation of the models enables an interpretation by human experts. Existing and previously known expert knowledge can be added to the developed knowledge representation framework or it can be used as constraints. Additionally, the knowledge acquisition framework can be repeated several times. In each step, new insights from the search process can be added to the knowledge base to improve the overall performance of the proposed learning algorithms.
文摘This paper presents a new efficient algorithm for mining frequent closed itemsets. It enumerates the closed set of frequent itemsets by using a novel compound frequent itemset tree that facilitates fast growth and efficient pruning of search space. It also employs a hybrid approach that adapts search strategies, representations of projected transaction subsets, and projecting methods to the characteristics of the dataset. Efficient local pruning, global subsumption checking, and fast hashing methods are detailed in this paper. The principle that balances the overheads of search space growth and pruning is also discussed. Extensive experimental evaluations on real world and artificial datasets showed that our algorithm outperforms CHARM by a factor of five and is one to three orders of magnitude more efficient than CLOSET and MAFIA.
文摘针对传统序列模式挖掘(SPM)不考虑模式重复性且忽略各项的效用(单价或利润)与模式长度对用户兴趣度影响的问题,提出一次性条件下top-k高平均效用序列模式挖掘(TOUP)算法。TOUP算法主要包括两个核心步骤:平均效用计算和候选模式生成。首先,提出基于各项出现位置与项重复关系数组的CSP(Calculation Support of Pattern)算法计算模式支持度,从而实现模式平均效用的快速计算;其次,采用项集扩展和序列扩展生成候选模式,并提出了最大平均效用上界,基于该上界实现对候选模式的有效剪枝。在5个真实数据集和1个合成数据集上的实验结果表明,相较于TOUP-dfs和HAOP-ms算法,TOUP算法的候选模式数分别降低了38.5%~99.8%和0.9%~77.6%;运行时间分别降低了33.6%~97.1%和57.9%~97.2%。TOUP的算法性能更优,能更高效地挖掘用户感兴趣的模式。