期刊文献+
共找到284篇文章
< 1 2 15 >
每页显示 20 50 100
A Fast Interactive Sequential Pattern Mining Algorithm 被引量:1
1
作者 LU Jie-Ping LIU Yue-bo +2 位作者 NI wei-wei LIU Tong-ming SUN Zhi-hui 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第1期31-36,共6页
In order to reduce the computational and spatial complexity in rerunning algorithm of sequential patterns query, this paper proposes sequential patterns based and projection database based algorithm for fast interacti... In order to reduce the computational and spatial complexity in rerunning algorithm of sequential patterns query, this paper proposes sequential patterns based and projection database based algorithm for fast interactive sequential patterns mining algorithm (FISP), in which the number of frequent items of the projection databases constructed by the correct mining which based on the previously mined sequences has been reduced. Furthermore, the algorithm's iterative running times are reduced greatly by using global-threshold. The results of experiments testify that FISP outperforms PrefixSpan in interactive mining 展开更多
关键词 data mining sequential patterns interactive mining projection database
下载PDF
A Fast Algorithm for Mining Sequential Patterns from Large Databases
2
作者 陈宁 陈安 +1 位作者 周龙骧 刘鲁 《Journal of Computer Science & Technology》 SCIE EI CSCD 2001年第4期359-370,共12页
Mining sequential patterns from large databases has been recognized by many researchers as an attractive task of data mining and knowledge dis- covery. Previous algorithms scan the databases for many times, which is ... Mining sequential patterns from large databases has been recognized by many researchers as an attractive task of data mining and knowledge dis- covery. Previous algorithms scan the databases for many times, which is often unendurable due to the very large amount of databases. In this paper, the authors introduce an effective algorithm for mining sequential patterns from large databases. In the algorithm, the original database is not used at all for counting the support of sequences after the first pass. Rather, a tidlist structure generated in the Previous pass is employed for the purpose based on set intersection operations, avoiding the multiple scans of the databases. 展开更多
关键词 data mining knowledge discovery sequential pattern set opera-tion
原文传递
From Sequential Pattern Mining to Structured Pattern Mining: A Pattern-Growth Approach 被引量:18
3
作者 Jia-WeiHan JianPei Xi-FengYan 《Journal of Computer Science & Technology》 SCIE EI CSCD 2004年第3期257-279,共23页
Sequential pattern mining is an important data mining problem with broadapplications. However, it is also a challenging problem since the mining may have to generate orexamine a combinatorially explosive number of int... Sequential pattern mining is an important data mining problem with broadapplications. However, it is also a challenging problem since the mining may have to generate orexamine a combinatorially explosive number of intermediate subsequences. Recent studies havedeveloped two major classes of sequential pattern mining methods: (1) a candidategeneration-and-test approach, represented by (ⅰ) GSP, a horizontal format-based sequential patternmining method, and (ⅱ) SPADE, a vertical format-based method; and (2) a pattern-growth method,represented by PrefixSpan and its further extensions, such as gSpan for mining structured patterns.In this study, we perform a systematic introduction and presentation of the pattern-growthmethodology and study its principles and extensions. We first introduce two interestingpattern-growth algorithms, FreeSpan and PrefixSpan, for efficient sequential pattern mining. Then weintroduce gSpan for mining structured patterns using the same methodology. Their relativeperformance in large databases is presented and analyzed. Several extensions of these methods arealso discussed in the paper, including mining multi-level, multi-dimensional patterns and miningconstraint-based patterns. 展开更多
关键词 data mining sequential pattern mining structured pattern mining SCALABILITY performance analysis
原文传递
Finding frequent trajectories by clustering and sequential pattern mining 被引量:4
4
作者 Arthur A.Shaw N.P.Gopalan 《Journal of Traffic and Transportation Engineering(English Edition)》 2014年第6期393-403,共11页
Data mining is a powerful emerging technology that helps to extract hidden information from a huge volume of historical data. This paper is concerned with finding the frequent trajectories of moving objects in spatio-... Data mining is a powerful emerging technology that helps to extract hidden information from a huge volume of historical data. This paper is concerned with finding the frequent trajectories of moving objects in spatio-temporal data by a novel method adopting the concepts of clustering and sequential pattern mining. The algorithms used logically split the trajectory span area into clusters and then apply the k-means algorithm over this clusters until the squared error minimizes. The new method applies the threshold to obtain active clusters and arranges them in descending order based on number of trajectories passing through. From these active clusters, inter cluster patterns are found by a sequential pattern mining technique. The process is repeated until all the active clusters are linked. The clusters thus linked in sequence are the frequent trajectories. A set of experiments conducted using real datasets shows that the proposed method is relatively five times better than the existing ones. A comparison is made with the results of other algorithms and their variation is analyzed by statistical methods. Further, tests of significance are conducted with ANOVA to find the efficient threshold value for the optimum plot of frequent trajectories. The results are analyzed and found to be superior than the existing ones. This approach may be of relevance in finding alternate paths in busy networks ( congestion control), finding the frequent paths of migratory birds, or even to predict the next level of pattern characteristics in case of time series data with minor alterations and finding the frequent path of balls in certain games. 展开更多
关键词 data mining frequent trajectory CLUSTERING sequential pattern mining statistical method
原文传递
Analyzing Sequential Patterns in Retail Databases
5
作者 Unil Yun 《Journal of Computer Science & Technology》 SCIE EI CSCD 2007年第2期287-296,共10页
Finding correlated sequential patterns in large sequence databases is one of the essential tasks in data mining since a huge number of sequential patterns are usually mined, but it is hard to find sequential patterns ... Finding correlated sequential patterns in large sequence databases is one of the essential tasks in data mining since a huge number of sequential patterns are usually mined, but it is hard to find sequential patterns with the correlation. According to the requirement of real applications, the needed data analysis should be different. In previous mining approaches, after mining the sequential patterns, sequential patterns with the weak affinity are found even with a high minimum support. In this paper, a new framework is suggested for mining weighted support affinity patterns in which an objective measure, sequential ws-confidence is developed to detect correlated sequential patterns with weighted support affinity patterns. To efficiently prune the weak affinity patterns, it is proved that ws-confidence measure satisfies the anti-monotone and cross weighted support properties which can be applied to eliminate sequential patterns with dissimilar weighted support levels. Based on the framework, a weighted support affinity pattern mining algorithm (WSMiner) is suggested. The performance study shows that WSMiner is efficient and scalable for mining weighted support affinity patterns. 展开更多
关键词 data mining sequential pattern mining sequential ws-confidence weighted support affinity
原文传递
Mapping frequent spatio-temporal wind profile patterns using multi-dimensional sequential pattern mining
6
作者 Norhakim Yusof Raul Zurita-Milla 《International Journal of Digital Earth》 SCIE EI 2017年第3期238-256,共19页
Holistic understanding of wind behaviour over space,time and height is essential for harvesting wind energy application.This study presents a novel approach for mapping frequent wind profile patterns using multidimen... Holistic understanding of wind behaviour over space,time and height is essential for harvesting wind energy application.This study presents a novel approach for mapping frequent wind profile patterns using multidimensional sequential pattern mining(MDSPM).This study is illustrated with a time series of 24 years of European Centre for Medium-Range Weather Forecasts European Reanalysis-Interim gridded(0.125°×0.125°)wind data for the Netherlands every 6 h and at six height levels.The wind data were first transformed into two spatio-temporal sequence databases(for speed and direction,respectively).Then,the Linear time Closed Itemset Miner Sequence algorithm was used to extract the multidimensional sequential patterns,which were then visualized using a 3D wind rose,a circular histogram and a geographical map.These patterns were further analysed to determine their wind shear coefficients and turbulence intensities as well as their spatial overlap with current areas with wind turbines.Our analysis identified four frequent wind profile patterns.One of them highly suitable to harvest wind energy at a height of 128 m and 68.97%of the geographical area covered by this pattern already contains wind turbines.This study shows that the proposed approach is capable of efficiently extracting meaningful patterns from complex spatio-temporal datasets. 展开更多
关键词 Spatio-temporal data mining multi-dimensional sequential pattern mining wind shear coefficient turbulence intensity wind energy
原文传递
An Overview of Data Mining and Knowledge Discovery 被引量:8
7
作者 范建华 李德毅 《Journal of Computer Science & Technology》 SCIE EI CSCD 1998年第4期348-368,共21页
With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data ... With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data mining and knowledge discovery in databases. Several emerging applications in information providing services, such as data warehousing and on-line services over the Internet, also call for various data mining and knowledge discovery techniques to understand user behavior better, to improve the service provided, and to increase the business opportunities. In response to such a demand, this article is to provide a comprehensive survey on the data mining and knowledge discovery techniques developed recently, and introduce some real application systems as well. In conclusion, this article also lists some problems and challenges for further research. 展开更多
关键词 knowledge discovery in databases data mining machine learning association rule CLASSIFICATION data clustering data generalization pattern searching
原文传递
Learn More about Your Data: A Symbolic Regression Knowledge Representation Framework
8
作者 Ingo Schwab Norbert Link 《International Journal of Intelligence Science》 2012年第4期135-142,共8页
In this paper, we propose a flexible knowledge representation framework which utilizes Symbolic Regression to learn and mathematical expressions to represent the knowledge to be captured from data. In this approach, l... In this paper, we propose a flexible knowledge representation framework which utilizes Symbolic Regression to learn and mathematical expressions to represent the knowledge to be captured from data. In this approach, learning algorithms are used to generate new insights which can be added to domain knowledge bases supporting again symbolic regression. This is used for the generalization of the well-known regression analysis to fulfill supervised classification. The approach aims to produce a learning model which best separates the class members of a labeled training set. The class boundaries are given by a separation surface which is represented by the level set of a model function. The separation boundary is defined by the respective equation. In our symbolic approach, the learned knowledge model is represented by mathematical formulas and it is composed of an optimum set of expressions of a given superset. We show that this property gives human experts options to gain additional insights into the application domain. Furthermore, the representation in terms of mathematical formulas (e.g., the analytical model and its first and second derivative) adds additional value to the classifier and enables to answer questions, which sub-symbolic classifier approaches cannot. The symbolic representation of the models enables an interpretation by human experts. Existing and previously known expert knowledge can be added to the developed knowledge representation framework or it can be used as constraints. Additionally, the knowledge acquisition framework can be repeated several times. In each step, new insights from the search process can be added to the knowledge base to improve the overall performance of the proposed learning algorithms. 展开更多
关键词 Classification SYMBOLIC Regression knowledge Management data mining pattern Recognition
下载PDF
An efficient algorithm for mining closed itemsets 被引量:1
9
作者 刘君强 潘云鹤 《Journal of Zhejiang University Science》 CSCD 2004年第1期8-15,共8页
This paper presents a new efficient algorithm for mining frequent closed itemsets. It enumerates the closed set of frequent itemsets by using a novel compound frequent itemset tree that facilitates fast growth and eff... This paper presents a new efficient algorithm for mining frequent closed itemsets. It enumerates the closed set of frequent itemsets by using a novel compound frequent itemset tree that facilitates fast growth and efficient pruning of search space. It also employs a hybrid approach that adapts search strategies, representations of projected transaction subsets, and projecting methods to the characteristics of the dataset. Efficient local pruning, global subsumption checking, and fast hashing methods are detailed in this paper. The principle that balances the overheads of search space growth and pruning is also discussed. Extensive experimental evaluations on real world and artificial datasets showed that our algorithm outperforms CHARM by a factor of five and is one to three orders of magnitude more efficient than CLOSET and MAFIA. 展开更多
关键词 knowledge discovery data mining Frequent closed patterns Association rules
下载PDF
一次性条件下top-k高平均效用序列模式挖掘算法
10
作者 杨克帅 武优西 +2 位作者 耿萌 刘靖宇 李艳 《计算机应用》 CSCD 北大核心 2024年第2期477-484,共8页
针对传统序列模式挖掘(SPM)不考虑模式重复性且忽略各项的效用(单价或利润)与模式长度对用户兴趣度影响的问题,提出一次性条件下top-k高平均效用序列模式挖掘(TOUP)算法。TOUP算法主要包括两个核心步骤:平均效用计算和候选模式生成。首... 针对传统序列模式挖掘(SPM)不考虑模式重复性且忽略各项的效用(单价或利润)与模式长度对用户兴趣度影响的问题,提出一次性条件下top-k高平均效用序列模式挖掘(TOUP)算法。TOUP算法主要包括两个核心步骤:平均效用计算和候选模式生成。首先,提出基于各项出现位置与项重复关系数组的CSP(Calculation Support of Pattern)算法计算模式支持度,从而实现模式平均效用的快速计算;其次,采用项集扩展和序列扩展生成候选模式,并提出了最大平均效用上界,基于该上界实现对候选模式的有效剪枝。在5个真实数据集和1个合成数据集上的实验结果表明,相较于TOUP-dfs和HAOP-ms算法,TOUP算法的候选模式数分别降低了38.5%~99.8%和0.9%~77.6%;运行时间分别降低了33.6%~97.1%和57.9%~97.2%。TOUP的算法性能更优,能更高效地挖掘用户感兴趣的模式。 展开更多
关键词 数据挖掘 序列模式挖掘 高平均效用 一次性条件 TOP-K
下载PDF
带通配符和One-Off条件的序列模式挖掘 被引量:23
11
作者 吴信东 谢飞 +2 位作者 黄咏明 胡学钢 高隽 《软件学报》 EI CSCD 北大核心 2013年第8期1804-1815,共12页
很多应用领域产生大量的序列数据.如何从这些序列数据中挖掘具有重要价值的模式,已成为序列模式挖掘研究的主要任务.研究这样一个问题:给定序列S、支持度阈值和间隔约束,从序列S中挖掘所有出现次数不小于给定支持度阈值的频繁序列模式,... 很多应用领域产生大量的序列数据.如何从这些序列数据中挖掘具有重要价值的模式,已成为序列模式挖掘研究的主要任务.研究这样一个问题:给定序列S、支持度阈值和间隔约束,从序列S中挖掘所有出现次数不小于给定支持度阈值的频繁序列模式,并且要求模式中任意两个相邻元素在序列中的出现位置满足用户定义的间隔约束.设计了一种有效的带有通配符的模式挖掘算法One-Off Mining,模式在序列中的出现满足One-Off条件,即模式的任意两次出现都不共享序列中同一位置的字符.在生物DNA序列上的实验结果表明,One-Off Mining比相关的序列模式挖掘算法具有更好的时间性能和完备性. 展开更多
关键词 数据挖掘 序列模式挖掘 频繁模式 通配符 One-Off条件
下载PDF
序列模式挖掘综述 被引量:24
12
作者 陈卓 杨炳儒 +1 位作者 宋威 宋泽锋 《计算机应用研究》 CSCD 北大核心 2008年第7期1960-1963,1976,共5页
综述了序列模式挖掘的研究状况。首先介绍了序列模式挖掘背景与相关概念;其次总结了序列模式挖掘的一般方法,介绍并分析了最具代表性的序列模式挖掘算法;最后展望序列模式挖掘的研究方向。便于研究者对已有算法进行改进,提出具有更好性... 综述了序列模式挖掘的研究状况。首先介绍了序列模式挖掘背景与相关概念;其次总结了序列模式挖掘的一般方法,介绍并分析了最具代表性的序列模式挖掘算法;最后展望序列模式挖掘的研究方向。便于研究者对已有算法进行改进,提出具有更好性能的新的序列模式挖掘算法。 展开更多
关键词 数据挖掘 序列模式 周期模式 增量式挖掘
下载PDF
基于权限频繁模式挖掘算法的Android恶意应用检测方法 被引量:47
13
作者 杨欢 张玉清 +1 位作者 胡予濮 刘奇旭 《通信学报》 EI CSCD 北大核心 2013年第S1期106-115,共10页
Android应用所申请的各个权限可以有效反映出应用程序的行为模式,而一个恶意行为的产生需要多个权限的配合,所以通过挖掘权限之间的关联性可以有效检测未知的恶意应用。以往研究者大多关注单一权限的统计特性,很少研究权限之间关联性的... Android应用所申请的各个权限可以有效反映出应用程序的行为模式,而一个恶意行为的产生需要多个权限的配合,所以通过挖掘权限之间的关联性可以有效检测未知的恶意应用。以往研究者大多关注单一权限的统计特性,很少研究权限之间关联性的统计特性。因此,为有效检测Android平台未知的恶意应用,提出了一种基于权限频繁模式挖掘算法的Android恶意应用检测方法,设计了能够挖掘权限之间关联性的权限频繁模式挖掘算法—PApriori。基于该算法对49个恶意应用家族进行权限频繁模式发现,得到极大频繁权限项集,从而构造出权限关系特征库来检测未知的恶意应用。最后,通过实验验证了该方法的有效性和正确性,实验结果表明所提出的方法与其他相关工作对比效果更优。 展开更多
关键词 频繁模式 数据挖掘 恶意应用检测 权限特征 ANDROID系统
下载PDF
大型数据库中的高效序列模式增量式更新算法 被引量:10
14
作者 邹翔 张巍 +1 位作者 蔡庆生 王清毅 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第2期165-171,共7页
 提出一种称为FIMS(fastincrementalminingofsequentialpatterns)的序列模式增量式更新算法,处理因数据库的更新而引起的序列模式的维护问题.主要思想是利用原先的序列模式挖掘结果,通过建立一个投影数据库来减少对整个数据库的扫描次...  提出一种称为FIMS(fastincrementalminingofsequentialpatterns)的序列模式增量式更新算法,处理因数据库的更新而引起的序列模式的维护问题.主要思想是利用原先的序列模式挖掘结果,通过建立一个投影数据库来减少对整个数据库的扫描次数和候选序列的生成,从而提高挖掘的效率.实验结果显示在更新数据量远小于整个数据库的大小时,FIMS算法的性能优于GSP算法4~7倍. 展开更多
关键词 数据库 增量式更新算法 数据挖掘 序列模式 扫描次数 侯选序列
下载PDF
一种挖掘压缩序列模式的有效算法 被引量:8
15
作者 童咏昕 张媛媛 +3 位作者 袁玫 马世龙 余丹 赵莉 《计算机研究与发展》 EI CSCD 北大核心 2010年第1期72-80,共9页
从序列数据库中挖掘频繁序列模式是数据挖掘领域的一个中心研究主题,而且该领域已经提出和研究了各种有效的序列模式挖掘算法.由于在挖掘过程中会产生大量的频繁序列模式,最近许多研究者已经不再聚焦于序列模式挖掘算法的效率,而更关注... 从序列数据库中挖掘频繁序列模式是数据挖掘领域的一个中心研究主题,而且该领域已经提出和研究了各种有效的序列模式挖掘算法.由于在挖掘过程中会产生大量的频繁序列模式,最近许多研究者已经不再聚焦于序列模式挖掘算法的效率,而更关注于如何让用户更容易地理解序列模式的结果集.受压缩频繁项集思想的启发,提出了一种CFSP(compressing frequent sequential patterns)算法,其可挖掘出少量有代表性的序列模式来表达全部频繁序列模式的信息,并且清除了大量的冗余序列模式.CFSP是一种two-steps的算法:在第1步,其获得了全部闭序列模式作为有代表性序列模式的候选集,与此同时还得到大多数的有代表性模式;在第2步,该算法只花费了少量的时间去发现剩余的有代表性序列模式.一个采用真实数据集与模拟数据集的实验研究也证明了CFSP算法具有高效性. 展开更多
关键词 挖掘序列模式 压缩 频繁模式挖掘 关联规则 数据挖掘
下载PDF
一个简单的Web日志挖掘系统 被引量:22
16
作者 杨怡玲 管旭东 +1 位作者 陆丽娜 尤晋元 《上海交通大学学报》 EI CAS CSCD 北大核心 2000年第7期932-935,共4页
在分析 Web日志挖掘的困难及对策的基础上 ,给出了一个简单的 Web日志挖掘系统( SWLMS)的体系结构 .具体介绍了 SWLMS中日志的预处理过程 ,包括数据净化、用户识别、会话识别、路径补充的主要任务及其实现 ,并着重介绍了预处理之后的序... 在分析 Web日志挖掘的困难及对策的基础上 ,给出了一个简单的 Web日志挖掘系统( SWLMS)的体系结构 .具体介绍了 SWLMS中日志的预处理过程 ,包括数据净化、用户识别、会话识别、路径补充的主要任务及其实现 ,并着重介绍了预处理之后的序列模式识别过程和算法 ,包括最大向前路径的识别和频繁遍历路径的发现 。 展开更多
关键词 数据挖掘 WEB日志挖掘 序列模式识别 SWLMS
下载PDF
免预设间隔约束的对比序列模式高效挖掘 被引量:15
17
作者 王慧锋 段磊 +3 位作者 左劼 王文韬 李钟麒 唐常杰 《计算机学报》 EI CSCD 北大核心 2016年第10期1979-1991,共13页
对比序列模式在识别不同类别序列样本集合的特征上有着重要的作用.已有对比序列模式挖掘算法需要用户预设间隔约束.在不具备充分先验知识情况下,用户不易准确地预设恰当的间隔约束,进而导致不能发现有用的模式.对此,文中设计了带紧凑间... 对比序列模式在识别不同类别序列样本集合的特征上有着重要的作用.已有对比序列模式挖掘算法需要用户预设间隔约束.在不具备充分先验知识情况下,用户不易准确地预设恰当的间隔约束,进而导致不能发现有用的模式.对此,文中设计了带紧凑间隔约束的最小对比序列模式挖掘算法,实现免预设间隔约束,并对候选模式自动计算最适合的间隔约束.此外,设计了3种剪枝策略来提高算法的执行效率.通过蛋白质序列、DNA序列、行为序列数据集验证了提出的算法的有效性和高效率. 展开更多
关键词 对比序列模式 间隔约束 序列数据挖掘
下载PDF
闭合序列模式挖掘算法 被引量:9
18
作者 沙金 邓成玉 +1 位作者 张翠肖 刘伟峰 《计算机工程与设计》 CSCD 北大核心 2006年第3期514-518,共5页
提出了一种新的挖掘闭合序列模式的PosD算法,该算法利用位置数据保存数据项的顺序信息,并基于位置数据列表保存数据项的顺序关系提出了两种修剪方法:逆向超模式和相同位置数据。为了确保栅格存储的正确性和简洁性,另外还针对一些特殊情... 提出了一种新的挖掘闭合序列模式的PosD算法,该算法利用位置数据保存数据项的顺序信息,并基于位置数据列表保存数据项的顺序关系提出了两种修剪方法:逆向超模式和相同位置数据。为了确保栅格存储的正确性和简洁性,另外还针对一些特殊情况做处理。试验结果表明,在中大型数据库和小支持度的情况下该算法比CloSpan算法更有效。 展开更多
关键词 数据挖掘 序列模式 闭合序列模式 逆向超模式
下载PDF
基于模式挖掘的用户行为异常检测算法 被引量:15
19
作者 宋海涛 韦大伟 +1 位作者 汤光明 孙怡峰 《小型微型计算机系统》 CSCD 北大核心 2016年第2期221-226,共6页
为了解决恶意终端用户行为的安全管控问题,针对用户行为的规律性、偶然性、多重复性的特点,提出一种基于模式挖掘的用户行为异常检测算法.该算法针对单个用户行为序列,包括序列模式挖掘和模式比较两个过程.序列模式挖掘应用滑动时间窗... 为了解决恶意终端用户行为的安全管控问题,针对用户行为的规律性、偶然性、多重复性的特点,提出一种基于模式挖掘的用户行为异常检测算法.该算法针对单个用户行为序列,包括序列模式挖掘和模式比较两个过程.序列模式挖掘应用滑动时间窗口界定事务策略和首项固定策略,挖掘出用户的行为模式;通过模式比较计算的相关度,综合了当前行为模式与正常行为模式相比较的连接度、匹配度两个因素,当模式比较结果处于可评判区间,便可以给出异常检测的确定性结果.实验结果表明,由本文序列模式挖掘过程获得的用户行为模式更贴合用户的实际操作情况;模式比较得到的相关度能够区分正常行为与异常行为,有效地实现用户行为的异常检测. 展开更多
关键词 序列模式 数据挖掘 单用户行为 异常检测
下载PDF
挖掘最大频繁模式的新方法 被引量:15
20
作者 刘君强 孙晓莹 +1 位作者 王勋 潘云鹤 《计算机学报》 EI CSCD 北大核心 2004年第10期1328-1334,共7页
由于其内在的计算复杂性 ,挖掘密集型数据集的频繁模式完全集非常困难 ,解决方案之一是挖掘最大频繁模式集 .该文在频繁模式完全集挖掘算法OpportuneProject基础上 ,提出了挖掘最大频繁模式的新算法MOP .它采用宽度与深度优先相结合的... 由于其内在的计算复杂性 ,挖掘密集型数据集的频繁模式完全集非常困难 ,解决方案之一是挖掘最大频繁模式集 .该文在频繁模式完全集挖掘算法OpportuneProject基础上 ,提出了挖掘最大频繁模式的新算法MOP .它采用宽度与深度优先相结合的混合搜索策略 ,能恰当地选择不同的支持集表示和投影方法 ,将闭合性剪裁和一般性剪裁相结合 ,并适时前窥 ,实现搜索与剪裁效率最优化 .实验表明 ,MOP效率是MaxMiner的 2~ 8倍 ,比MAFIA高 2个数量级以上 . 展开更多
关键词 知识发现 数据挖掘 最大频繁模式 关联规则 混合搜索策略 完全集挖掘算法 MOP
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部