The importance of prerequisites for education has recently become a promising research direction.This work proposes a statistical model for measuring dependencies in learning resources between knowledge units.Instruct...The importance of prerequisites for education has recently become a promising research direction.This work proposes a statistical model for measuring dependencies in learning resources between knowledge units.Instructors are expected to present knowledge units in a semantically well-organized manner to facilitate students’understanding of the material.The proposed model reveals how inner concepts of a knowledge unit are dependent on each other and on concepts not in the knowledge unit.To help understand the complexity of the inner concepts themselves,WordNet is included as an external knowledge base in thismodel.The goal is to develop a model that will enable instructors to evaluate whether or not a learning regime has hidden relationships which might hinder students’ability to understand the material.The evaluation,employing three textbooks,shows that the proposed model succeeds in discovering hidden relationships among knowledge units in learning resources and in exposing the knowledge gaps in some knowledge units.展开更多
Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose...Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks.Design/Methodology/Approach:The IKM model enhances the preferential attachment and growth observed in scale-free BA networks,while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network.To compare its performance,the BA and DMS models are also employed for simulating the network.Pearson coefficient analysis is conducted on the simulated networks generated by the IKM,BA and DMS models,as well as on the actual network.Findings:The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network.It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm.The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units.Research Limitations:This study has some limitations.Firstly,it primarily focuses on the evolution of knowledge flow networks within the field of physics,neglecting other fields.Additionally,the analysis is based on a specific set of data,which may limit the generalizability of the findings.Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets.Practical Implications:The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions.It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations.The model can aid in optimizing knowledge flow and enhancing collaboration within organizations.Originality/value:This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks.The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions.Moreover,the model has the potential to be applied to other knowledge networks,which are formed by knowledge organizations as node units.展开更多
Resources are the base and core of education information, but current web education resources have no structure and it is still difficult to reuse them and make them can be self assembled and developed continually. Ac...Resources are the base and core of education information, but current web education resources have no structure and it is still difficult to reuse them and make them can be self assembled and developed continually. According to the knowledge structure of course and text, the relation among knowledge points, knowledge units from three levels of media material, we can build education resource components, and build TKCM (Teaching Knowledge Combination Model) based on resource components. Builders can build and assemble knowledge system structure and make knowledge units can be self assembled, thus we can develop and consummate them continually. Users can make knowledge units can be self assembled and renewed, and build education knowledge system to satisfy users' demand under the form of education knowledge system.展开更多
Systems Science principles are the universal fundamental philosophical principles for analyzing, understanding, reforming and perfecting the objective world. This paper presents a Systems-Science-Based Knowledge Model...Systems Science principles are the universal fundamental philosophical principles for analyzing, understanding, reforming and perfecting the objective world. This paper presents a Systems-Science-Based Knowledge Model (SSBKM) to establish a more general knowledge structure model. It can be regarded as a development of frame representation for discovering and constructing slot structures as well as the frame structures. With this model the paper also presents a System-Sciences-Based Object-Oriented Analysis method (SSBOOA), which is a strategy to find and determine object classes and class structures, the relations between object instances of different classes, not to just explain classes. Finally, the paper illustrates knowledge analysis and computerizing (synthesizing) steps in an example of SSBKM of cognitive psychology-based CAI Network for Teaching Middle School Mathematics.展开更多
文摘The importance of prerequisites for education has recently become a promising research direction.This work proposes a statistical model for measuring dependencies in learning resources between knowledge units.Instructors are expected to present knowledge units in a semantically well-organized manner to facilitate students’understanding of the material.The proposed model reveals how inner concepts of a knowledge unit are dependent on each other and on concepts not in the knowledge unit.To help understand the complexity of the inner concepts themselves,WordNet is included as an external knowledge base in thismodel.The goal is to develop a model that will enable instructors to evaluate whether or not a learning regime has hidden relationships which might hinder students’ability to understand the material.The evaluation,employing three textbooks,shows that the proposed model succeeds in discovering hidden relationships among knowledge units in learning resources and in exposing the knowledge gaps in some knowledge units.
基金supported in part by the National Natural Science Foundation of China under Grant 72264036in part by the West Light Foundation of The Chinese Academy of Sciences under Grant 2020-XBQNXZ-020+1 种基金Social Science Foundation of Xinjiang under Grant 2023BGL077the Research Program for High-level Talent Program of Xinjiang University of Finance and Economics 2022XGC041,2022XGC042.
文摘Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks.Design/Methodology/Approach:The IKM model enhances the preferential attachment and growth observed in scale-free BA networks,while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network.To compare its performance,the BA and DMS models are also employed for simulating the network.Pearson coefficient analysis is conducted on the simulated networks generated by the IKM,BA and DMS models,as well as on the actual network.Findings:The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network.It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm.The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units.Research Limitations:This study has some limitations.Firstly,it primarily focuses on the evolution of knowledge flow networks within the field of physics,neglecting other fields.Additionally,the analysis is based on a specific set of data,which may limit the generalizability of the findings.Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets.Practical Implications:The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions.It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations.The model can aid in optimizing knowledge flow and enhancing collaboration within organizations.Originality/value:This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks.The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions.Moreover,the model has the potential to be applied to other knowledge networks,which are formed by knowledge organizations as node units.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (2002AA111010 2003AA001032)
文摘Resources are the base and core of education information, but current web education resources have no structure and it is still difficult to reuse them and make them can be self assembled and developed continually. According to the knowledge structure of course and text, the relation among knowledge points, knowledge units from three levels of media material, we can build education resource components, and build TKCM (Teaching Knowledge Combination Model) based on resource components. Builders can build and assemble knowledge system structure and make knowledge units can be self assembled, thus we can develop and consummate them continually. Users can make knowledge units can be self assembled and renewed, and build education knowledge system to satisfy users' demand under the form of education knowledge system.
文摘Systems Science principles are the universal fundamental philosophical principles for analyzing, understanding, reforming and perfecting the objective world. This paper presents a Systems-Science-Based Knowledge Model (SSBKM) to establish a more general knowledge structure model. It can be regarded as a development of frame representation for discovering and constructing slot structures as well as the frame structures. With this model the paper also presents a System-Sciences-Based Object-Oriented Analysis method (SSBOOA), which is a strategy to find and determine object classes and class structures, the relations between object instances of different classes, not to just explain classes. Finally, the paper illustrates knowledge analysis and computerizing (synthesizing) steps in an example of SSBKM of cognitive psychology-based CAI Network for Teaching Middle School Mathematics.