融合异构信息进行专利交易推荐可以促进交易,但存在因忽略专利属性而影响推荐结果的问题。本研究提出基于属性异构网络(attribute heterogeneous network,AHN)表示学习的专利交易推荐模型(patent transaction recommendation based on A...融合异构信息进行专利交易推荐可以促进交易,但存在因忽略专利属性而影响推荐结果的问题。本研究提出基于属性异构网络(attribute heterogeneous network,AHN)表示学习的专利交易推荐模型(patent transaction recommendation based on AHN representation learning,AHNRL-PTR)。首先筛选专利和组织中影响专利交易的属性;其次构建专利交易AHN,然后在AHN中引入网络表示学习,并基于多维高斯分布解决节点表示的不确定性,基于KL散度(Kullback-Leibler divergence)解决节点间距离非对称性。最后,以粤港澳大湾区有效发明授权专利数据进行实证研究,得出结论:第一,相比于metapath2vec、TADW(text-associated DeepWalk)和AHNRL-PTR模型的两个变体方法,AHNRL-PTR模型的推荐精度最高,超过86%,说明融合组织及专利属性,并聚焦节点表示的不确定性和非对称性问题的解决,能大幅提高推荐精度;第二,在非准确指标IntraSim和Popularity上,AHNRL-PTR的表现优于metapath2vec和两个变体方法,反映该方法的推荐结果具有一定的多样性,且可以挖掘推荐冷门专利;第三,基于两个非准确指标将组织聚类为六类,分别为中介型、领域骨干型、研究型、族群型、成长型、专业型,体现了推荐结果的可解释性和个性化水平。本研究可为专利交易智能化推荐服务提供决策支持。展开更多