On Projective Modules with Constant RanksIn this paper,we investigate module structures of rings over which every finitely generated projective module with constant rank is stably free. As applications,we give charact...On Projective Modules with Constant RanksIn this paper,we investigate module structures of rings over which every finitely generated projective module with constant rank is stably free. As applications,we give characterizations of some related rings.展开更多
A ring R is called orthogonal if for any two idempotents e and f in R, the condition that e and f are orthogonal in R implies the condition that [eR] and [fR] are orthogonal in K0(R)+, i.e., [eR]∧[fR] = 0. In this pa...A ring R is called orthogonal if for any two idempotents e and f in R, the condition that e and f are orthogonal in R implies the condition that [eR] and [fR] are orthogonal in K0(R)+, i.e., [eR]∧[fR] = 0. In this paper, we shall prove that the K0-group of every orthogonal, IBN2 exchange ring is always torsion-free, which generalizes the main result in [3].展开更多
文摘On Projective Modules with Constant RanksIn this paper,we investigate module structures of rings over which every finitely generated projective module with constant rank is stably free. As applications,we give characterizations of some related rings.
基金the National Natural Science Foundation of China (No. 10571080) the Natural Science Foundation of Jiangxi Province (No. 0611042) the Science and Technology Projiet Foundation of Jiangxi Province (No. G[20061194) and the Doctor Foundation of Jiangxi University of Science and Technology.
文摘A ring R is called orthogonal if for any two idempotents e and f in R, the condition that e and f are orthogonal in R implies the condition that [eR] and [fR] are orthogonal in K0(R)+, i.e., [eR]∧[fR] = 0. In this paper, we shall prove that the K0-group of every orthogonal, IBN2 exchange ring is always torsion-free, which generalizes the main result in [3].