期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
角形映射与Koebe域
1
作者 熊成继 张太忠 《南京气象学院学报》 CSCD 1999年第2期260-263,共4页
研究了角形映射,得到一个角形映射是否属于标准化单叶函数集S的一个充分必要条件。
关键词 共形映射 角形映射 koebe 单叶函数
下载PDF
THE FEKETE-SZEG PROBLEM FOR CLOSE-TO-CONVEX FUNCTIONS WITH RESPECT TO THE KOEBE FUNCTION 被引量:1
2
作者 Bogumila KOWALCZYK Adam LECKO 《Acta Mathematica Scientia》 SCIE CSCD 2014年第5期1571-1583,共13页
An analytic function f in the unit disk D := {z ∈ C : |z| 〈 1}, standardly normalized, is called close-to-convex with respect to the Koebe function k(z) := z/(1-z)2, z ∈ D, if there exists δ ∈ (-π/2,... An analytic function f in the unit disk D := {z ∈ C : |z| 〈 1}, standardly normalized, is called close-to-convex with respect to the Koebe function k(z) := z/(1-z)2, z ∈ D, if there exists δ ∈ (-π/2,π/2) such that Re {eiδ(1-z)2f′(z)} 〉 0, z ∈ D. For the class C(k) of all close-to-convex functions with respect to k, related to the class of functions convex in the positive direction of the imaginary axis, the Fekete-Szego problem is studied. 展开更多
关键词 Fekete-Szego problem close-to-convex functions close-to-convex functionswith respect to the koebe function close-to-convex functions with argumentδ functions convex in the positive direction of the imaginary axis
下载PDF
Koebe Type Theorems and Pre-Schwarzian of Harmonic K-quasiconformal Mappings,and Their Applications
3
作者 Shao Lin CHEN Saminathan PONNUSAMY 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2022年第11期1965-1980,共16页
In this article,we first establish an asymptotically sharp Koebe type covering theorem for harmonic K-quasiconformal mappings.Then we use it to obtain an asymptotically Koebe type distortion theorem,a coefficients est... In this article,we first establish an asymptotically sharp Koebe type covering theorem for harmonic K-quasiconformal mappings.Then we use it to obtain an asymptotically Koebe type distortion theorem,a coefficients estimate,a Lipschitz characteristic and a linear measure distortion theorem of harmonic K-quasiconformal mappings.At last,we give some characterizations of the radial John disks with the help of pre-Schwarzian of harmonic mappings. 展开更多
关键词 Harmonic K-quasiconformal mapping koebe type covering theorem koebe type distortion theorem Radial John disk
原文传递
Koebe Problems and Teichmiiller Theory
4
作者 Jin Song LIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第3期959-962,共4页
In this paper we study the deformation space of certain Kleinian groups. As a result, we give a new proof of the finite Koebe theorem on Riemann surfaces from a viewpoint of Teichmüller theory.
关键词 koebe problem Teichmüller space Circle
原文传递
lonApollonian度量及其应用(英文)
5
作者 赵振江 《河南科技大学学报(自然科学版)》 CAS 2004年第4期82-85,共4页
利用变换和模给出了Apollonian度量的解析表达式 ,建立了Apollonian度量与双曲度量的联系 ,得到了拟圆的一个充分条件。最后 ,作为应用给出了著名的Koebe’s 14
关键词 Apollonian度量 双曲度量 拟圆 koebe’s1/4定理
下载PDF
一类解析函数的性质
6
作者 李向阳 《科技信息》 2009年第13期180-180,共1页
定义了一类解析函数-FFn类,设U是平面上的单位圆,H(U)为U上的解析函数集,n是正整数,定义FFn=△{f(z)∈H(U)|f(0)=0,f'(0)=eπ2ni,f(z)isonetooneonU,n≥1}。本文给出了FFn解析函数类的4个性质定理。
关键词 解析函数 一对一映射 零点 koebe扩展函数
下载PDF
C^n中星形映照的增长及1/4定理 被引量:1
7
作者 Carl H. Fitzgerald 龚昇 Roger W. Barnard 《科学通报》 EI CAS CSCD 北大核心 1989年第3期161-162,共2页
1.五十余年前,Henri Cartan建议将一个复变数的几何函数论推广到多个复变数去。他特別提到了星形映照类及凸映照类是有兴趣去推广的课题。他指出了进行推广的困难所在,在多圆柱(同样对于超球)上双全纯映照的增长定理是不成立的。同时,... 1.五十余年前,Henri Cartan建议将一个复变数的几何函数论推广到多个复变数去。他特別提到了星形映照类及凸映照类是有兴趣去推广的课题。他指出了进行推广的困难所在,在多圆柱(同样对于超球)上双全纯映照的增长定理是不成立的。同时,他也观察到:对于正规化的双全纯映照不可能存在在原点的一个邻域为所有这样的映照所掩盖。也就是,不存在Koe- 展开更多
关键词 星形映照 凸映照 koebe1/4定理
原文传递
THE GROWTH AND 1/4-THEOREMS FOR STARLIKE MAPPINGS IN C^n
8
作者 CARL H. FITZ GERALD 龚昇 ROGER W. BARNARD 《Chinese Science Bulletin》 SCIE EI CAS 1990年第5期357-359,共3页
ⅠMore than fifty years ago, Henri Cartant ~j suggested that geometric function theory ofone complex variable should be extended to biholomorphic mappings of several complexvariables. In particular, he cited the speci... ⅠMore than fifty years ago, Henri Cartant ~j suggested that geometric function theory ofone complex variable should be extended to biholomorphic mappings of several complexvariables. In particular, he cited the special classes of starlike and convex mappings asappropriate topics for generalization. In noting some of the difficulties of generalization, hepointed out the Growth Theorem as one of the results that would not extend to thepolydisc (nor to the ball). Also, he observed that for normalized biholomorphic 展开更多
关键词 STARLIKE MAPPING CONVEX MAPPING koebe 1/4-Theorem.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部