Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity ag...Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry.展开更多
The effects of kojic acid on phenoloxidase (PO) of Plutella xylostella were investigated, when it had been partially purified by 40% saturated [(NH4)2SO4] and Sephadex G-100 gel filtration. Kojic acid showed inhibit...The effects of kojic acid on phenoloxidase (PO) of Plutella xylostella were investigated, when it had been partially purified by 40% saturated [(NH4)2SO4] and Sephadex G-100 gel filtration. Kojic acid showed inhibitory effects on both monophenolase and o-diphenolase activity of the PO. The inhibitor concentrations leading to 50% (IC50) activity lost were estimated to be 0.07 mmol L-1 for monophenolase and 1 mmol L-1 for diphenolase, respectively. Kojic acid can also prolong the lag time of PO for oxidation of L-tyrosine. The inhibition kinetics were analyzed by Lineweaver-Burk plots and kojic acid was found to be a reversible competitive inhibitor with the Ki of 0.47 mmol L-1. The ability of kojic acid to inhibit the enzyme activity may be associated with its ability to chelate copper at the active site. In addition, the iron ion was found to shorten the lag time obviously, but have no important effect on the monophenolase activity.展开更多
Chilled duck meat is a popularly consumed meat in China but easily perishes at room/low temperature. Kojic acid is usually used as an antimicrobial. This study investigated the sensory scores, total bacteria number, a...Chilled duck meat is a popularly consumed meat in China but easily perishes at room/low temperature. Kojic acid is usually used as an antimicrobial. This study investigated the sensory scores, total bacteria number, and total volatile base nitrogen (TVB-N) value of chilled duck meat under kojic acid treatment during storage. The results presented that kojic acid suppressed the growth of spoilage bacteria and prolonged the shelf-life of chilled duck meat by at least two days. In further investigation, the bacterial community composition was explored through high-throughput sequencing. Pseudomonas spp. were the predominant spoilage bacteria after 6-day storage and were significantly suppressed by kojic acid. Besides, Brochothrix showed drug resistance and became the dominant bacteria in the kojic acid treated sample after 6-day storage. In conclusion, kojic acid maintained the sensorial, chemical, and microbial quality of duck meat stored at low temperatures. Meanwhile, kojic acid enriched the bacteria composition and showed strong antimicrobial activity against Pseudomonas spp.展开更多
Objective: To isolate and evaluate the antimicrobial activity of the active principle(s) from the ethyl acetate(EtOAc) extract of endophytic fungus Colietotrichum gloeosporioides(C.gloeosporioides) isolated from Sonne...Objective: To isolate and evaluate the antimicrobial activity of the active principle(s) from the ethyl acetate(EtOAc) extract of endophytic fungus Colietotrichum gloeosporioides(C.gloeosporioides) isolated from Sonneratia apetala. Methods: Water agar technique was used to isolate the fungus, and both microscopic and molecular techniques were used for identification of the strain. Potato dextrose broth was used to grow the fungus in large-scale. Reversed-phase preparative HPLC analysis was performed to isolate the major active compound, kojic acid. The EtOAc extract and kojic acid were screened for their antimicrobial activity against two Grampositive and two Gram-negative bacteria as well as a fungal strain using the resazurin 96-well microtitre plate antimicrobial assay. Results: The fungus C. gloeosporioides was isolated from the leaves of Sonneratia apetala. Initial identification of the fugal isolate was carried out using spore characteristics observed under the microscope. Subsequently, the ITS1-5.8 S-ITS2 sequencing was employed for species-level identification of the fungus C. gloeosporioides. Five litres of liquid culture of the fungus produced approximately 610 mg of a mixture of secondary metabolites.Kojic acid(1) was isolated as the main secondary metabolite present in the fungal extract, and the structure was confirmed by 1 D, 2 D NMR and mass spectrometry. The EtOAc extract and compound 1 exhibited considerable antimicrobial activity against all tested microorganisms.Whilst the minimum inhibitory concentration(MIC) values from the EtOAc extract ranged between 2.4×10^(-4)mg/mL and 2.5 mg/mL, those of kojic acid(1) were between 0.125 mg/mL and1 mg/mL. The EtOAc extract and kojic acid(1) were most active against Pseudomonas aeruginosa(MIC = 2.4×10^(-4). mg/mL) and Micrococcus luteus(MIC = 0.125 mg/mL), respectively. Conclusions:The results revealed that the endophytic fungus C. gloeosporioides could be a good source of commercially important kojic acid, which exhibited antimicrobial properties.展开更多
The deconstructive reorganization strategy for the synthesis of benzene-containing products from the kojic acid-and maltol-derived alkynes has been recently reported.In this strategy,kojic acid and maltol are analogou...The deconstructive reorganization strategy for the synthesis of benzene-containing products from the kojic acid-and maltol-derived alkynes has been recently reported.In this strategy,kojic acid and maltol are analogous to the"Transformers",which can transform into benzofurans and benzaldehydes via annulation reactions.Under the synthetic standpoint,this deconstructive reorganization strategy features high atom economy,innate scalability and functional group tolerance.In the near future,we believe that this unique method will be widely investigated a nd other novel transformations of kojic acid and maltol will be discovered.展开更多
A melanin synthesis inhibitor and bacteriostatic agent, kojic acid(KA) has been intercalated into Zn-Ti layered double hydroxide(LDH) by an anion-exchange reaction. The structure and the thermal stability of the sampl...A melanin synthesis inhibitor and bacteriostatic agent, kojic acid(KA) has been intercalated into Zn-Ti layered double hydroxide(LDH) by an anion-exchange reaction. The structure and the thermal stability of the samples were characterized by XRD, FT-IR, TG-DTA and SEM. The study of KA release from ZnTi-KALDH in phosphate buffered solution(pH 5) implies that ZnTi-KA-LDH is a better controlled release system than pure KA. Meanwhile, the mechanisms of slow release were assessed by using four commonly kinetic models. The antimicrobial activity of ZnTi-KA-LDH was tested against three kinds of bacteria. The inhibition of L-dopa oxidation was tested to verify its skin whitening effect. The studies suggest that the kojic acid intercalated LDHs has the potential application as a safely functional composite in cosmetic.展开更多
基金supported by National Natural Science Foundation of China(31972021)R&D Projects in Key Areas of Guangdong Province(2019B020212003)+4 种基金the Science and Technology Program of Guangzhou,China(202206010177)Guangdong key research and development program(2021B0202060001)Foshan and agricultural academy cooperation projectGuangdong Modern Agriculture project(2022KJ117)Aquatic Products Center Project of GAAS。
文摘Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry.
基金The study was supperted by the State Science and Technology Commission of China(30270887).
文摘The effects of kojic acid on phenoloxidase (PO) of Plutella xylostella were investigated, when it had been partially purified by 40% saturated [(NH4)2SO4] and Sephadex G-100 gel filtration. Kojic acid showed inhibitory effects on both monophenolase and o-diphenolase activity of the PO. The inhibitor concentrations leading to 50% (IC50) activity lost were estimated to be 0.07 mmol L-1 for monophenolase and 1 mmol L-1 for diphenolase, respectively. Kojic acid can also prolong the lag time of PO for oxidation of L-tyrosine. The inhibition kinetics were analyzed by Lineweaver-Burk plots and kojic acid was found to be a reversible competitive inhibitor with the Ki of 0.47 mmol L-1. The ability of kojic acid to inhibit the enzyme activity may be associated with its ability to chelate copper at the active site. In addition, the iron ion was found to shorten the lag time obviously, but have no important effect on the monophenolase activity.
基金The Major Technological Innovation Projects of Hubei Province(2017ABA136).
文摘Chilled duck meat is a popularly consumed meat in China but easily perishes at room/low temperature. Kojic acid is usually used as an antimicrobial. This study investigated the sensory scores, total bacteria number, and total volatile base nitrogen (TVB-N) value of chilled duck meat under kojic acid treatment during storage. The results presented that kojic acid suppressed the growth of spoilage bacteria and prolonged the shelf-life of chilled duck meat by at least two days. In further investigation, the bacterial community composition was explored through high-throughput sequencing. Pseudomonas spp. were the predominant spoilage bacteria after 6-day storage and were significantly suppressed by kojic acid. Besides, Brochothrix showed drug resistance and became the dominant bacteria in the kojic acid treated sample after 6-day storage. In conclusion, kojic acid maintained the sensorial, chemical, and microbial quality of duck meat stored at low temperatures. Meanwhile, kojic acid enriched the bacteria composition and showed strong antimicrobial activity against Pseudomonas spp.
基金financially supported by the Robert S McNamara Fellowship Programme from the World Bank offered to Tauhidur Rahman Nurunnabi
文摘Objective: To isolate and evaluate the antimicrobial activity of the active principle(s) from the ethyl acetate(EtOAc) extract of endophytic fungus Colietotrichum gloeosporioides(C.gloeosporioides) isolated from Sonneratia apetala. Methods: Water agar technique was used to isolate the fungus, and both microscopic and molecular techniques were used for identification of the strain. Potato dextrose broth was used to grow the fungus in large-scale. Reversed-phase preparative HPLC analysis was performed to isolate the major active compound, kojic acid. The EtOAc extract and kojic acid were screened for their antimicrobial activity against two Grampositive and two Gram-negative bacteria as well as a fungal strain using the resazurin 96-well microtitre plate antimicrobial assay. Results: The fungus C. gloeosporioides was isolated from the leaves of Sonneratia apetala. Initial identification of the fugal isolate was carried out using spore characteristics observed under the microscope. Subsequently, the ITS1-5.8 S-ITS2 sequencing was employed for species-level identification of the fungus C. gloeosporioides. Five litres of liquid culture of the fungus produced approximately 610 mg of a mixture of secondary metabolites.Kojic acid(1) was isolated as the main secondary metabolite present in the fungal extract, and the structure was confirmed by 1 D, 2 D NMR and mass spectrometry. The EtOAc extract and compound 1 exhibited considerable antimicrobial activity against all tested microorganisms.Whilst the minimum inhibitory concentration(MIC) values from the EtOAc extract ranged between 2.4×10^(-4)mg/mL and 2.5 mg/mL, those of kojic acid(1) were between 0.125 mg/mL and1 mg/mL. The EtOAc extract and kojic acid(1) were most active against Pseudomonas aeruginosa(MIC = 2.4×10^(-4). mg/mL) and Micrococcus luteus(MIC = 0.125 mg/mL), respectively. Conclusions:The results revealed that the endophytic fungus C. gloeosporioides could be a good source of commercially important kojic acid, which exhibited antimicrobial properties.
基金the National Natural Science Foundation of China(Nos.21871053 and 21532001)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(No.2019R01005)。
文摘The deconstructive reorganization strategy for the synthesis of benzene-containing products from the kojic acid-and maltol-derived alkynes has been recently reported.In this strategy,kojic acid and maltol are analogous to the"Transformers",which can transform into benzofurans and benzaldehydes via annulation reactions.Under the synthetic standpoint,this deconstructive reorganization strategy features high atom economy,innate scalability and functional group tolerance.In the near future,we believe that this unique method will be widely investigated a nd other novel transformations of kojic acid and maltol will be discovered.
基金supported by Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University
文摘A melanin synthesis inhibitor and bacteriostatic agent, kojic acid(KA) has been intercalated into Zn-Ti layered double hydroxide(LDH) by an anion-exchange reaction. The structure and the thermal stability of the samples were characterized by XRD, FT-IR, TG-DTA and SEM. The study of KA release from ZnTi-KALDH in phosphate buffered solution(pH 5) implies that ZnTi-KA-LDH is a better controlled release system than pure KA. Meanwhile, the mechanisms of slow release were assessed by using four commonly kinetic models. The antimicrobial activity of ZnTi-KA-LDH was tested against three kinds of bacteria. The inhibition of L-dopa oxidation was tested to verify its skin whitening effect. The studies suggest that the kojic acid intercalated LDHs has the potential application as a safely functional composite in cosmetic.