期刊文献+
共找到350篇文章
< 1 2 18 >
每页显示 20 50 100
An Environmental Learning Support System Incorporating the Life Cycle Concept
1
作者 Akira Shirato Kayoko Yamamoto 《Journal of Environmental Protection》 2020年第6期491-508,共18页
The need for environmental education, which incorporates the life cycle concept into the learning program, will become increasingly greater all over the world. In the present study, an e-learning system, which is made... The need for environmental education, which incorporates the life cycle concept into the learning program, will become increasingly greater all over the world. In the present study, an e-learning system, which is made up of 3 parts including text-based learning materials, quizzes to review the content of the learning materials and CO<sub>2</sub> emission simulation, was designed and developed with the purpose of supporting environmental learning. Targeting a wide range of people, the operation period of this system was 1 month. Based on the results of questionnaire survey for users, it was evident that the quiz function and the simulation function of CO<sub>2</sub> emission contributed to the efficiency in environmental learning, and the format of the e-learning system was effective and helpful for environmental learning. Additionally, with the users’ awareness related to environmental conservation before and after using the system, significant changes in awareness were seen in areas such as behavioral intention, sense of urgency and sense of connection. Furthermore, as it was revealed that 62% of the total access numbers were from mobile devices, it was effective to prepare an interface optimized for mobile devices enabling users to use the system from their smartphones and tablet PCs. 展开更多
关键词 Environmental learning Life cycle Assessment (LCA) Life cycle Concept Environmental Education Sustainable Development Goals (SDGs) E-learning System
下载PDF
The 3E learning cycle in the television show Sid the Science Kid
2
作者 ZHAO Xuemei Farland-Smith 《科学教育与博物馆》 2015年第3期186-191,共6页
This article reports on a research study on Sid the Science Kid PBS television show including meth-ods for preschool teachers to promote the inclusion of the 3E Learning Cycle and the tents of the nature of sci-ence i... This article reports on a research study on Sid the Science Kid PBS television show including meth-ods for preschool teachers to promote the inclusion of the 3E Learning Cycle and the tents of the nature of sci-ence in their preschool science education curriculum. We discussed: (a)the value of the Sid the Science Kidmedia tool and its relationship to the nature of science; (b)how to identify the 3E's Learning Cycle in the Sidthe Science Kid media tool. The goal of this study is to analyze if the 3E's (Explain, Explore, Engage) are pre-sent in a television promoting inquiry for young learners. We are suggesting the Sid media tool be a model forthe explicit teaching of the 3E's and the nature of science, not behavior management. 展开更多
关键词 PRESCHOOL education SID the SCIENCE Kid The 3E learning cycle
下载PDF
Quantification of the concrete freeze–thaw environment across the Qinghai–Tibet Plateau based on machine learning algorithms
3
作者 QIN Yanhui MA Haoyuan +3 位作者 ZHANG Lele YIN Jinshuai ZHENG Xionghui LI Shuo 《Journal of Mountain Science》 SCIE CSCD 2024年第1期322-334,共13页
The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering ma... The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP. 展开更多
关键词 Freeze–thaw cycles Quantification Machine learning algorithms Qinghai–Tibet Plateau CONCRETE
下载PDF
基于改进CycleGAN的水下图像颜色校正与增强 被引量:11
4
作者 李庆忠 白文秀 牛炯 《自动化学报》 EI CAS CSCD 北大核心 2023年第4期820-829,共10页
针对水下观测图像的颜色失真和散射模糊问题,提出一种基于改进循环一致性生成对抗网络(Cycle-consistent generative adversarial networks,CycleGAN)的水下图像颜色校正与增强算法.为了利用CycleGAN学习水下降质图像到空气中图像的映... 针对水下观测图像的颜色失真和散射模糊问题,提出一种基于改进循环一致性生成对抗网络(Cycle-consistent generative adversarial networks,CycleGAN)的水下图像颜色校正与增强算法.为了利用CycleGAN学习水下降质图像到空气中图像的映射关系,对传统CycleGAN的损失函数进行了改进,提出了基于图像强边缘结构相似度(Strong edge and structure similarity,SESS)损失函数的SESS-CycleGAN,SESS-CycleGAN可以在保留原水下图像的边缘结构信息的前提下实现水下降质图像的颜色校正和对比度增强.为了确保增强后图像和真实脱水图像颜色的一致性,建立了SESSCycleGAN和正向生成网络G相结合的网络结构;并提出了两阶段学习策略,即先利用非成对训练集以弱监督方式进行SESS-CycleGAN学习,然后再利用少量成对训练集以强监督方式进行正向生成网络G的监督式学习.实验结果表明:本文算法在校正水下图像颜色失真的同时还增强了图像对比度,且较好地实现了增强后图像和真实脱水图像视觉颜色的一致性. 展开更多
关键词 水下图像 深度学习 循环一致性生成对抗网络 颜色校正 图像增强
下载PDF
基于Cycle-GAN和改进DPN网络的乳腺癌病理图像分类 被引量:5
5
作者 张雪芹 李天任 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第4期727-735,共9页
针对病理图像染色不均匀及良恶性难以鉴别的问题,提出基于Cycle-GAN和改进的双路径网络(DPN)的算法框架.利用Cycle-GAN进行颜色归一化处理,解决因病理图像染色不均匀导致的检测模型精度偏低问题,通过对图像进行重叠切片,基于DPN网络采... 针对病理图像染色不均匀及良恶性难以鉴别的问题,提出基于Cycle-GAN和改进的双路径网络(DPN)的算法框架.利用Cycle-GAN进行颜色归一化处理,解决因病理图像染色不均匀导致的检测模型精度偏低问题,通过对图像进行重叠切片,基于DPN网络采用增加小卷积、反卷积和注意力机制,增强模型对病理图像纹理特征的分类能力.在BreaKHis数据集上的实验结果表明,所提算法有效提高了乳腺癌病理图像良恶性分类的准确性. 展开更多
关键词 乳腺癌病理图像分类 深度学习 cycle-GAN网络 双路径网络(DPN) 注意力机制
下载PDF
基于Cycle-GAN的绝缘子图像生成方法 被引量:8
6
作者 王金娜 苏杰 +2 位作者 杨凯 翟永杰 刘洪吉 《广东电力》 2020年第1期100-108,共9页
深度学习模型应用于输电线路绝缘子目标检测时,在训练样本方面存在公开样本集缺乏和优质样本不足的问题,为此提出一种基于循环一致性生成对抗网络(cycle-generative adversarial networks,Cycle-GAN)的绝缘子图像生成方法。首先分析绝... 深度学习模型应用于输电线路绝缘子目标检测时,在训练样本方面存在公开样本集缺乏和优质样本不足的问题,为此提出一种基于循环一致性生成对抗网络(cycle-generative adversarial networks,Cycle-GAN)的绝缘子图像生成方法。首先分析绝缘子样本集,对绝缘子图像基于背景色彩特征进行风格域划分;之后在划分好的绝缘子风格域样本集基础上,采用Cycle-GAN生成绝缘子图像样本;最后,搭建分类网络验证生成图像用于扩充的有效性,并进一步探究了生成图像不同扩增比例对分类性能的影响。结果表明:绝缘子生成样本可一定程度上替代真实样本;生成图像不同扩充比例对网络性能影响不同,当扩充比例在40%~50%时,分类网络性能提升效果最佳。 展开更多
关键词 循环一致性生成对抗网络 图像生成 深度学习 绝缘子检测
下载PDF
Seismic impedance inversion based on cycle-consistent generative adversarial network 被引量:9
7
作者 Yu-Qing Wang Qi Wang +2 位作者 Wen-Kai Lu Qiang Ge Xin-Fei Yan 《Petroleum Science》 SCIE CAS CSCD 2022年第1期147-161,共15页
Deep learning has achieved great success in a variety of research fields and industrial applications.However,when applied to seismic inversion,the shortage of labeled data severely influences the performance of deep l... Deep learning has achieved great success in a variety of research fields and industrial applications.However,when applied to seismic inversion,the shortage of labeled data severely influences the performance of deep learning-based methods.In order to tackle this problem,we propose a novel seismic impedance inversion method based on a cycle-consistent generative adversarial network(Cycle-GAN).The proposed Cycle-GAN model includes two generative subnets and two discriminative subnets.Three kinds of loss,including cycle-consistent loss,adversarial loss,and estimation loss,are adopted to guide the training process.Benefit from the proposed structure,the information contained in unlabeled data can be extracted,and adversarial learning further guarantees that the prediction results share similar distributions with the real data.Moreover,a neural network visualization method is adopted to show that the proposed CNN model can learn more distinguishable features than the conventional CNN model.The robustness experiments on synthetic data sets show that the proposed method can achieve better performances than other methods in most cases.And the blind-well experiments on real seismic profiles show that the predicted impedance curve of the proposed method maintains a better correlation with the true impedance curve. 展开更多
关键词 Seismic inversion cycle GAN Deep learning Semi-supervised learning Neural network visualization
下载PDF
一种基于CycleGAN改进的低剂量CT图像增强网络 被引量:4
8
作者 廖仕敏 刘仰川 +2 位作者 朱叶晨 王艳玲 高欣 《图学学报》 CSCD 北大核心 2022年第4期570-579,共10页
低剂量CT是一种有效且相对安全的胸腹部疾病筛查手段,但图像中的伪影和噪声会严重影响医生的诊断。基于深度学习的图像增强方法中网络训练大多依赖于难以获取的配对数据,即同一患者相同部位像素级匹配的低剂量和常规剂量CT图像。针对非... 低剂量CT是一种有效且相对安全的胸腹部疾病筛查手段,但图像中的伪影和噪声会严重影响医生的诊断。基于深度学习的图像增强方法中网络训练大多依赖于难以获取的配对数据,即同一患者相同部位像素级匹配的低剂量和常规剂量CT图像。针对非配对数据,提出了一种基于循环一致性生成对抗网络(CycleGAN)改进的低剂量CT图像增强网络,在生成器前添加浅层特征预提取模块,增强对CT图像特征的提取能力;并利用深度可分离卷积替换生成器中的部分普通卷积,减少网络参数和显存占用。该网络使用3275张低剂量CT图像和2790张非配对常规剂量CT图像进行训练,另外1716张低剂量CT图像进行测试。结果表明,该网络生成的CT图像的平均感知图像质量评价指标(PIQE)为45.53,比CycleGAN的结果降低了8.3%,更远低于三维块匹配滤波(BM3D)31.9%、无监督图像转换网络(UNIT)20.9%,且在结构细节保持、噪声和伪影抑制方面均获得了更好的主观视觉效果,是一种具有潜在临床应用前景的低剂量CT图像增强方法。 展开更多
关键词 低剂量CT 图像增强 深度学习 非配对数据 循环一致性生成对抗网络
下载PDF
基于Cycle-GAN的有源欺骗干扰方法 被引量:1
9
作者 王伟 武星辉 +1 位作者 王钦钊 王敏 《火力与指挥控制》 CSCD 北大核心 2022年第9期9-14,共6页
针对基于数字射频存储器有源欺骗干扰性能不足的问题,提出一种基于循环一致性生成对抗网络的干扰信号生成算法。该算法使用干净回波信号序列(即未添加干扰的原始回波信号)作为网络生成器的输入,将添加干扰的回波信号作为判决器的判决标... 针对基于数字射频存储器有源欺骗干扰性能不足的问题,提出一种基于循环一致性生成对抗网络的干扰信号生成算法。该算法使用干净回波信号序列(即未添加干扰的原始回波信号)作为网络生成器的输入,将添加干扰的回波信号作为判决器的判决标准,对生成器生成的干扰信号进行判决,通过生成-判决的对抗过程不断优化模型,达到纳什均衡后得到最终干扰信号。实验结果表明,采用循环一致性生成对抗网络模型生成的干扰信号相比切片干扰、弥散频谱干扰具有更优性能,在实际场景中有广泛的应用前景。 展开更多
关键词 有源欺骗干扰 深度学习 循环一致性生成对抗网络 切片干扰 弥散频谱干扰
下载PDF
基于CycleGAN的低照度人脸图像增强 被引量:3
10
作者 朱克亮 张天忠 +2 位作者 石雪梅 张树涛 陈良锋 《计算机技术与发展》 2021年第11期95-100,共6页
人脸识别系统经常会受到光照环境的影响。为了提高低照度条件下的人脸识别性能,提出了一种基于循环生成对抗网络的低照度人脸图像增强方法,利用循环生成对抗网络将低照度条件下的人脸图像转换成正常光照下的人脸图像。模型包含生成器和... 人脸识别系统经常会受到光照环境的影响。为了提高低照度条件下的人脸识别性能,提出了一种基于循环生成对抗网络的低照度人脸图像增强方法,利用循环生成对抗网络将低照度条件下的人脸图像转换成正常光照下的人脸图像。模型包含生成器和判别器,生成器由包含4个卷积层、9个残差网络层和2个转置卷积层的卷积神经网络组成,判别器由包含5个卷积层的卷积神经网络组成。在循环生成对抗网络训练的过程中,采用改进的损失函数,并结合梯度惩罚项来训练网络模型,提升了稳定性,加快了网络收敛速度,并且提高了生成人脸图像的质量。在VV数据集上的实验结果表明,该方法能够有效地实现低照度条件下的人脸图像增强,对比HE、MSR和MSRCR算法在PSNR、SSIM和MSE指标上有较大提高。 展开更多
关键词 循环生成对抗网络 图像增强 低照度 梯度处罚 深度学习
下载PDF
Enhancing Iterative Learning Control With Fractional Power Update Law 被引量:1
11
作者 Zihan Li Dong Shen Xinghuo Yu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1137-1149,共13页
The P-type update law has been the mainstream technique used in iterative learning control(ILC)systems,which resembles linear feedback control with asymptotical convergence.In recent years,finite-time control strategi... The P-type update law has been the mainstream technique used in iterative learning control(ILC)systems,which resembles linear feedback control with asymptotical convergence.In recent years,finite-time control strategies such as terminal sliding mode control have been shown to be effective in ramping up convergence speed by introducing fractional power with feedback.In this paper,we show that such mechanism can equally ramp up the learning speed in ILC systems.We first propose a fractional power update rule for ILC of single-input-single-output linear systems.A nonlinear error dynamics is constructed along the iteration axis to illustrate the evolutionary converging process.Using the nonlinear mapping approach,fast convergence towards the limit cycles of tracking errors inherently existing in ILC systems is proven.The limit cycles are shown to be tunable to determine the steady states.Numerical simulations are provided to verify the theoretical results. 展开更多
关键词 Asymptotic convergence convergence rate finiteiteration tracking fractional power learning rule limit cycles
下载PDF
基于改进Cycle-GAN的光流无监督估计方法
12
作者 刘晓晨 张涛 《导航定位与授时》 CSCD 2022年第4期51-59,共9页
卷积神经网络为光流的计算提供了一种新的方式,但作为一种数据驱动技术,用于训练网络的大规模光流真值在现实世界中不易获取。为了解决这个弊端,基于Cycle-GAN的循环对抗机制,提出了一种光流无监督估计方法。首先,引入双判别器机制在生... 卷积神经网络为光流的计算提供了一种新的方式,但作为一种数据驱动技术,用于训练网络的大规模光流真值在现实世界中不易获取。为了解决这个弊端,基于Cycle-GAN的循环对抗机制,提出了一种光流无监督估计方法。首先,引入双判别器机制在生成器生成的光流样本的底层和高层特征上进行鉴别,迫使生成器提高光流生成的精度。其次,引入Spynet作为教师网络,在生成器训练前期对其进行指导,防止网络陷入模式崩塌。最后,改进损失函数,提出了光流一致性损失和轮廓一致性损失函数,进一步提升光流估计精度。实验结果表明,与现有的先进算法相比,提出的方法达到与有监督算法相同的精度水平。 展开更多
关键词 光流估计 循环生成对抗网络 视觉导航 无监督学习
下载PDF
State-of-the-art and future directions of machine learning for biomass characterization and for sustainable biorefinery
13
作者 Aditya Velidandi Pradeep Kumar Gandam +7 位作者 Madhavi Latha Chinta Srilekha Konakanchi Anji reddy Bhavanam Rama Raju Baadhe Minaxi Sharma James Gaffey Quang D.Nguyen Vijai Kumar Gupta 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期42-63,I0003,共23页
Machine learning(ML)has emerged as a significant tool in the field of biorefinery,offering the capability to analyze and predict complex processes with efficiency.This article reviews the current state of biorefinery ... Machine learning(ML)has emerged as a significant tool in the field of biorefinery,offering the capability to analyze and predict complex processes with efficiency.This article reviews the current state of biorefinery and its classification,highlighting various commercially successful biorefineries.Further,we delve into different categories of ML models,including their algorithms and applications in various stages of biorefinery lifecycle,such as biomass characterization,pretreatment,lignin valorization,chemical,thermochemical and biochemical conversion processes,supply chain analysis,and life cycle assessment.The benefits and limitations of each of these algorithms are discussed in detail.Finally,the article concludes with a discussion of the limitations and future prospects of ML in the field of biorefineries. 展开更多
关键词 BIOFUEL Biomass characterization BIOREFINERY Life cycle assessment Machine learning PRETREATMENT
下载PDF
Improving Brain Tumor Classification with Deep Learning Using Synthetic Data
14
作者 Muhammed Mutlu Yapici Rukiye Karakis Kali Gurkahraman 《Computers, Materials & Continua》 SCIE EI 2023年第3期5049-5067,共19页
Deep learning(DL)techniques,which do not need complex preprocessing and feature analysis,are used in many areas of medicine and achieve promising results.On the other hand,in medical studies,a limited dataset decrease... Deep learning(DL)techniques,which do not need complex preprocessing and feature analysis,are used in many areas of medicine and achieve promising results.On the other hand,in medical studies,a limited dataset decreases the abstraction ability of the DL model.In this context,we aimed to produce synthetic brain images including three tumor types(glioma,meningioma,and pituitary),unlike traditional data augmentation methods,and classify them with DL.This study proposes a tumor classification model consisting of a Dense Convolutional Network(DenseNet121)-based DL model to prevent forgetting problems in deep networks and delay information flow between layers.By comparing models trained on two different datasets,we demonstrated the effect of synthetic images generated by Cycle Generative Adversarial Network(CycleGAN)on the generalization of DL.One model is trained only on the original dataset,while the other is trained on the combined dataset of synthetic and original images.Synthetic data generated by CycleGAN improved the best accuracy values for glioma,meningioma,and pituitary tumor classes from 0.9633,0.9569,and 0.9904 to 0.9968,0.9920,and 0.9952,respectively.The developed model using synthetic data obtained a higher accuracy value than the related studies in the literature.Additionally,except for pixel-level and affine transform data augmentation,synthetic data has been generated in the figshare brain dataset for the first time. 展开更多
关键词 Brain tumor classification deep learning cycle generative adversarial network data augmentation
下载PDF
基于CycleGAN的灰度图像彩色化方法 被引量:1
15
作者 陈宗楠 叶耀光 潘家辉 《计算机系统应用》 2023年第8期126-132,共7页
当前主流的图片彩色化方法包括传统算法和深度学习方法.随着深度学习模型的发展,基于深度学习的灰度图像彩色化方法能带来更好的着色效果,但仍然存在细节损失和着色枯燥问题.针对上述问题,本文将CycleGAN模型应用在非单一类别的灰度图... 当前主流的图片彩色化方法包括传统算法和深度学习方法.随着深度学习模型的发展,基于深度学习的灰度图像彩色化方法能带来更好的着色效果,但仍然存在细节损失和着色枯燥问题.针对上述问题,本文将CycleGAN模型应用在非单一类别的灰度图像彩色化上,使其在动物、植物、风景等图片上有逼真的着色效果.模型结构上对CycleGAN模型的激活函数加以改进,在生成器使用PReLU激活函数,使模型更易于训练.在判别器使用PatchGAN提高图片高分辨率上的颜色细节.通过ImageNet数据集5个热门类别图像的训练后,模型对动植物与风景图彩色化的效果十分逼真.在图像评估指标中,该模型在PSNR中比GAN高了0.603 dB约有2.1%的提升,在SSIM中明显高于其他模型,在效果上有5.1%的提升.从视觉感受来看,通过CycleGAN彩色化的图片饱和度更高,在视觉真实性上高于VGG和GAN等模型,解决了着色枯燥问题,而且更容易还原图片中的颜色细节,避免细节损失. 展开更多
关键词 深度学习 图像处理 灰度图像彩色化 循环生成对抗网络 马尔可夫判别器 残差神经网络
下载PDF
Educational Software Development Life Cycle Stages
16
作者 Salah Alkhafaji B.Sriram 《Chinese Business Review》 2012年第1期128-137,共10页
Technological innovations have revolutionized the educational technology into various dimensions. Educational processes without educational technology have no value in this modern world. In education domain, the educa... Technological innovations have revolutionized the educational technology into various dimensions. Educational processes without educational technology have no value in this modern world. In education domain, the educational software has simplified the processes in greater extend. A implemented while developing such educational software. In particu proper lar, the development methodology has to be software developed to enrich these education processes should follow a development strategy to motivate the end users to utilize the hypermedia potentials. The software development life cycle (SDLC) has different phases in designing such educationa technology and assists the end users to benefit from the modern technology. This study identifies the various factors to be considered at each phase of the SDLC while developing educational software. Also, this study proposes some suggestions to be followed in ESDLC with respect to educational processes perspectives. The core idea of this study is to identify the various issues in implementing such educational software in day to day teaching and learning processes. 展开更多
关键词 software development life cycle (SDLC) educational technology teaching and learning processes technology innovations educational software
下载PDF
盐冻耦合作用下水工混凝土耐久性及寿命预测 被引量:3
17
作者 覃源 薛存 +1 位作者 李遥 周恒 《水力发电学报》 CSCD 北大核心 2024年第2期110-122,共13页
为研究西北地区冻融盐侵环境下水工混凝土的耐久性,制备了不同粉煤灰掺量的混凝土试件,以不同浓度的硫酸钠溶液作为介质开展了冻融循环试验,阐明了不同循环次数下试件的外观、质量、抗压强度和动弹模量的变化规律,基于XGBoost模型建立... 为研究西北地区冻融盐侵环境下水工混凝土的耐久性,制备了不同粉煤灰掺量的混凝土试件,以不同浓度的硫酸钠溶液作为介质开展了冻融循环试验,阐明了不同循环次数下试件的外观、质量、抗压强度和动弹模量的变化规律,基于XGBoost模型建立了混凝土寿命预测模型并对其进行了评价和验证。研究结果表明,随着冻融循环次数增加,混凝土质量、抗压强度和动弹模量逐渐减小;冻融循环次数和硫酸钠溶液浓度是影响混凝土寿命的关键因素,8%硫酸钠溶液破坏度最高,此溶液浓度下冻融150次后混凝土质损率达4.55%;粉煤灰的掺入量对混凝土耐久性有一定影响;最优粉煤灰掺量为10%,此掺量下冻融150次后混凝土质损率为3.99%;XGBoost模型在混凝土寿命预测方面具有较高的精确性和可靠性。本研究可为混凝土结构的耐久性设计和寿命预测提供参考。 展开更多
关键词 水工混凝土 冻融循环 硫酸盐侵蚀 寿命预测 机器学习模型
下载PDF
基于深度自回归模型的电网异常流量检测算法 被引量:1
18
作者 李勇 韩俊飞 +2 位作者 李秀芬 王鹏 王蓓 《沈阳工业大学学报》 CAS 北大核心 2024年第1期24-28,共5页
针对电网中行为种类复杂多样且数量众多的问题,提出了一种基于自回归模型的电网异常流量检测算法。该算法利用深度自编码网络自动提取网络流量数据的特征,降低异常流量检测的分析周期,并自动挖掘数据的层次关系。通过支持向量机对提取... 针对电网中行为种类复杂多样且数量众多的问题,提出了一种基于自回归模型的电网异常流量检测算法。该算法利用深度自编码网络自动提取网络流量数据的特征,降低异常流量检测的分析周期,并自动挖掘数据的层次关系。通过支持向量机对提取的特征进行分类,实现对异常流量的检测。仿真实验结果表明,所提算法可以分析不同攻击向量,避免噪声数据的干扰,进而提高电网异常流量检测的精度,对于流量数据处理具有重要意义。 展开更多
关键词 自回归模型 深度学习 异常检测 海量数据 分析周期 支持向量机
下载PDF
临床医学博士后Kolb学习风格调查分析 被引量:1
19
作者 王孜 庄俊玲 +2 位作者 李航 曲璇 陈苗 《中国医疗管理科学》 2024年第3期101-106,共6页
目的通过评价临床医学博士后的学习风格特征,提升学习者对自我学习风格的认知,提高学习灵活性,以指导教学实践。方法选取50名参与内科规范化培训的临床医学博士后,采用Kolb学习风格量表4.0版开展问卷调查,分析临床医学博士后学习风格特... 目的通过评价临床医学博士后的学习风格特征,提升学习者对自我学习风格的认知,提高学习灵活性,以指导教学实践。方法选取50名参与内科规范化培训的临床医学博士后,采用Kolb学习风格量表4.0版开展问卷调查,分析临床医学博士后学习风格特点,比较不同特征被调查者学习风格的分布情况、学习环节得分差异及学习弹性差异。结果临床医学博士后学习风格分布:思考型占20.0%,分析型占20.0%,平衡型占16.0%,经验型占14.0%,回顾型占10%,行动型占8.0%,决定型占8.0%,想象型占4.0%,无被调查者归属创始型。在女性博士后中,平衡型最多,其次是思考型、分析型和经验型,男性博士后则以思考型、分析型为主,平衡型显著少于女性博士后。8年制项目毕业博士后以思考型、分析型为主。在未来专业方向为内科的博士后中,思考型占比最多,其次为分析型和经验型,未来专业非内科的博士后以平衡型和分析型为主。毕业后第1年的被调查者具体经验(CE)得分显著低于其他毕业后年限组(P<0.05),其他学习环节得分及学习弹性在各类型分组中的差异均无统计学意义。结论临床医学博士后的学习风格以思考型和分析型为主,擅长抽象概念与反思观察。可以根据博士后学习风格来调整教学模式,以期提高教学质量。 展开更多
关键词 临床医学博士后 Kolb学习风格量表 Kolb学习周期 医学教学质量
下载PDF
The Practice of Deming Cycle Improvement Mechanism in Climate Change Environmental Education
20
作者 Jyh-Harng Shyng 《Journal of Contemporary Educational Research》 2021年第8期205-214,共10页
Cultivating environmental literacy is one of the most important tasks in the face of climate change.The purpose is to construct the general curriculum content of improving climate change adaptation to environmental li... Cultivating environmental literacy is one of the most important tasks in the face of climate change.The purpose is to construct the general curriculum content of improving climate change adaptation to environmental literacy,and to plan the evaluation mechanism of learning effectiveness.The use of learning theory,Problem-Based Learning(PBL)theory and Plan-Do-Check-Act(PDCA)cycle theory to improve the curriculum content and teaching continued to improve.This study focuses on the design coxirses from the three cognitive aspects of"conceptual cognition,""practical exercise" and "hands-on experience."Teach students how to cope with and respond to climate change to establish environmental literacy to mitigate the impact of natural reactions,and enhance awareness of environmental literacy by learning the science of climate adaptation and mitigation.The results of the actual implementation of the effectiveness assessment shows that,through studenfs feedback learning results,the courses presented gains for more,to know the appropriateness and necessity of curriculum planning,can be provided to the basic research of environmental literacy teaching curriculum planning. 展开更多
关键词 Environmental literacy Climate change learning theory Deming cycle
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部