The 1970-1985 day to day averaged pressure dataset of Shanghai and the extension method in phase space are used to calculate the correlation dimension D and the second-order Renyi entropy K2 of the approximation of Ko...The 1970-1985 day to day averaged pressure dataset of Shanghai and the extension method in phase space are used to calculate the correlation dimension D and the second-order Renyi entropy K2 of the approximation of Kolmogorov's entropy, the fractional dimension D = 7.7-7.9 and the positive value K2 - 0.1 are obtained. This shows that the attractor for the short-term weather evolution in the monsoon region of China exhibits a chaotic motion. The estimate of K2 yields a predictable time scale of about ten days. This result is in agreement with that obtained earlier by the dynamic-statistical approach.The effects of the lag time i on the estimate of D and K2 are investigated. The results show that D and K2 are convergent with respect to i. The day to day averaged pressure series used in this paper are treated for the extensive phase space with T = 5, the coordinate components are independent of each other; therefore, the dynamical character quantities of the system are stable and reliable.展开更多
Based directly on the original definition of K-S entropy, a new algorithm for calculating K-S entropy from chaotic time series is developed by using some techniques of coding and code operation.
In this paper, we consider a fuzzy c-means (FCM) clustering algorithm combined with the deterministic annealing method and the Tsallis entropy maximization. The Tsallis entropy is a q-parameter extension of the Shanno...In this paper, we consider a fuzzy c-means (FCM) clustering algorithm combined with the deterministic annealing method and the Tsallis entropy maximization. The Tsallis entropy is a q-parameter extension of the Shannon entropy. By maximizing the Tsallis entropy within the framework of FCM, membership functions similar to statistical mechanical distribution functions can be derived. One of the major considerations when using this method is how to determine appropriate q values and the highest annealing temperature, Thigh?, for a given data set. Accordingly, in this paper, a method for determining these values simultaneously without introducing any additional parameters is presented. In our approach, the membership function is approximated by a series of expansion methods and the K-means clustering algorithm is utilized as a preprocessing step to estimate a radius of each data distribution. The results of experiments indicate that the proposed method is effective and both q and Thigh can be determined automatically and algebraically from a given data set.展开更多
文摘The 1970-1985 day to day averaged pressure dataset of Shanghai and the extension method in phase space are used to calculate the correlation dimension D and the second-order Renyi entropy K2 of the approximation of Kolmogorov's entropy, the fractional dimension D = 7.7-7.9 and the positive value K2 - 0.1 are obtained. This shows that the attractor for the short-term weather evolution in the monsoon region of China exhibits a chaotic motion. The estimate of K2 yields a predictable time scale of about ten days. This result is in agreement with that obtained earlier by the dynamic-statistical approach.The effects of the lag time i on the estimate of D and K2 are investigated. The results show that D and K2 are convergent with respect to i. The day to day averaged pressure series used in this paper are treated for the extensive phase space with T = 5, the coordinate components are independent of each other; therefore, the dynamical character quantities of the system are stable and reliable.
基金The project supported by National Natural Science Foundation of China
文摘Based directly on the original definition of K-S entropy, a new algorithm for calculating K-S entropy from chaotic time series is developed by using some techniques of coding and code operation.
文摘In this paper, we consider a fuzzy c-means (FCM) clustering algorithm combined with the deterministic annealing method and the Tsallis entropy maximization. The Tsallis entropy is a q-parameter extension of the Shannon entropy. By maximizing the Tsallis entropy within the framework of FCM, membership functions similar to statistical mechanical distribution functions can be derived. One of the major considerations when using this method is how to determine appropriate q values and the highest annealing temperature, Thigh?, for a given data set. Accordingly, in this paper, a method for determining these values simultaneously without introducing any additional parameters is presented. In our approach, the membership function is approximated by a series of expansion methods and the K-means clustering algorithm is utilized as a preprocessing step to estimate a radius of each data distribution. The results of experiments indicate that the proposed method is effective and both q and Thigh can be determined automatically and algebraically from a given data set.