期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
High-Order Soliton Solutions and Hybrid Behavior for the (2 + 1)-Dimensional Konopelchenko-Dubrovsky Equations
1
作者 Xingying Li Yin Ji 《Journal of Applied Mathematics and Physics》 2024年第7期2452-2466,共15页
In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ... In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons. 展开更多
关键词 konopelchenko-Dubrovsky Equations Hirota Bilinear Method M-Order Lump Solutions High-Order Hybrid Solutions Interaction Behavior
下载PDF
耦合Konopelchenko-Dubrovsky方程的周期波解 被引量:3
2
作者 傅海明 戴正德 《西南民族大学学报(自然科学版)》 CAS 2013年第6期910-914,共5页
用F-展开法求解耦合Konopelchenko-Dubrovsky方程,得到了一些其它方法不能得出的新的显式行波解,其中包括Jacobi和Weierstrass椭圆函数周期解,双曲函数解和三角函数解.
关键词 耦合konopelchenko-Dubrovsky方程 F-展开法 孤波解 周期解
下载PDF
Konopelchenko-Dubrovsky方程的精确解 被引量:1
3
作者 张亚敏 《贵州大学学报(自然科学版)》 2012年第6期9-12,共4页
利用改进的tanh函数展开法,结合Maple环境中Epsilon软件包,求解Konopelchenko-Dubrovsky方程,获得方程若干精确解,同时也体现出改进的tanh函数展开法是一种行之有效的方法,可以广泛的应用于求非线性偏微分方程的精确解。
关键词 konopelchenko—Dubrovsky方程 精确解 tanh函数展开法 非线性偏微分方程
下载PDF
耦合Konopelchenko-Dubrovsky方程的新精确解
4
作者 傅海明 戴正德 《齐齐哈尔大学学报(自然科学版)》 2012年第1期75-78,共4页
利用一种基于符号计算的代数方法,结合Maple环境中的Epsilon软件包,求解耦合Konopelchenko-Dubrovsky方程,获得了新的显式行波解,其中包括Jacobi椭圆函数解、双曲函数解和三角函数解。用F-展开法求得(2+1)维色散的长波方程的新周期波解... 利用一种基于符号计算的代数方法,结合Maple环境中的Epsilon软件包,求解耦合Konopelchenko-Dubrovsky方程,获得了新的显式行波解,其中包括Jacobi椭圆函数解、双曲函数解和三角函数解。用F-展开法求得(2+1)维色散的长波方程的新周期波解和孤波解。 展开更多
关键词 耦合konopelchenko—Dubrovsky方程 F-展开法 JACOBI椭圆函数解 三角函数解 双曲函数解
下载PDF
New Exact Solutions for Konopelchenko-Dubrovsky Equation Using an Extended Riccati Equation Rational Expansion Method 被引量:5
5
作者 SONG Li-Na ZHANG Hong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第5期I0003-I0003,770-776,共8页
Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by u... Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations. 展开更多
关键词 konopelchenko-Dubrovsky equation extended Riccati equation rational expansion method nonlinear partial differential equation or equations
下载PDF
(2+1)维广义Bogoyavlensky-Konopelchenko方程的混合型孤子解 被引量:1
6
作者 邓昌瑞 周小红 《南昌大学学报(理科版)》 CAS 北大核心 2018年第4期339-342,共4页
广义Bogoyavlensky-Konopelchenko方程是一个重要的非线性发展方程。在符号计算软件Mathematica的帮助下,获得了广义Bogoyavlensky-Konopelchenko方程的Hirota双线性形式和一些新的混合型孤子解,通过选择不同参数的值,将这些获得的解的... 广义Bogoyavlensky-Konopelchenko方程是一个重要的非线性发展方程。在符号计算软件Mathematica的帮助下,获得了广义Bogoyavlensky-Konopelchenko方程的Hirota双线性形式和一些新的混合型孤子解,通过选择不同参数的值,将这些获得的解的物理结构展示在一些三维图形当中。 展开更多
关键词 Bogoyavlensky-konopelchenko方程 混合型孤子解 MathematicaHirota双线性形式
下载PDF
Periodic Wave Solutions for Konopelchenko-Dubrovsky Equation 被引量:1
7
作者 ZHANGJin-liang ZHANGLing-yuan WANGMing-liang 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2005年第1期72-78,共7页
By using F-expansion method proposed recently, we derive the periodic wave solution expressed by Jacobi elliptic functions for Konopelchenko-Dubrovsky equation. In the limit case, the solitary wave solution and other ... By using F-expansion method proposed recently, we derive the periodic wave solution expressed by Jacobi elliptic functions for Konopelchenko-Dubrovsky equation. In the limit case, the solitary wave solution and other type of the traveling wave solutions are derived. 展开更多
关键词 konopelchenko-Dubrovsky equation F-expansion method Jacobi elliptic functions periodic wave solution solitary wave solution
下载PDF
Travelling Wave Solutions for Konopelchenko-Dubrovsky Equation Using an Extended sinh-Gordon Equation Expansion Method
8
作者 YANG Xian-Lin TANG Jia-Shi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第11期1047-1051,共5页
The sinh-Gordon equation expansion method is further extended by generMizing the sinh-Gordon equation and constructing new ansatz solution of the considered equation. As its application, the (2+1)-dimensional Konop... The sinh-Gordon equation expansion method is further extended by generMizing the sinh-Gordon equation and constructing new ansatz solution of the considered equation. As its application, the (2+1)-dimensional Konopelchenko-Dubrovsky equation is investigated and abundant exact travelling wave solutions are explicitly obtained including solitary wave solutions, trigonometric function solutions and Jacobi elliptic doubly periodic function solutions, some of which are new exact solutions that we have never seen before within our knowledge. The method can be applied to other nonlinear evolution equations in mathematical physics. 展开更多
关键词 extended sinh-Gordon equation expansion method exact solutions nonlinear evolution equations konopelchenko-Dubrovsky equation
下载PDF
Infinitely Many Symmetries of Konopelchenko-Dubrovsky Equation
9
作者 LI Zhi-Fang RUAN Hang-Yu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第3X期385-388,共4页
A set of generalized symmetries with arbitrary functions of t for the Konopelchenko-Dubrovsky (KD)equation in 2+1 space dimensions is given by using a direct method called formal function series method presented by Lo... A set of generalized symmetries with arbitrary functions of t for the Konopelchenko-Dubrovsky (KD)equation in 2+1 space dimensions is given by using a direct method called formal function series method presented by Lou. These symmetries constitute an infinite-dimensional generalized w∞ algebra. 展开更多
关键词 formal function series method konopelchenko-Dubrovsky equation infinite dimensional generalized ω∞ algebra
下载PDF
Konopelchenko-Dubrovsky方程新的精确解及其计算机机械化实现
10
作者 李拔萃 《唐山师范学院学报》 2017年第5期31-34,共4页
通过构造新的扩展的第一类椭圆方程变换法,并借助符号计算软件Maple,得到了Konopelchenko-Dubrovsky方程新的精确解。
关键词 konopelchenko-Dubrovsky方程 新的扩展的第一类椭圆方程变换法 孤立波解 符号计算软件
下载PDF
Konopelchenko-Dubrovsky方程非行波孤子相互作用解 被引量:7
11
作者 康晓蓉 鲜大权 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期710-714,共5页
本文通过退耦变换将(2+1)维Konopelchenko-Dubrovsky方程化成单一方程,利用Lie群理论将所得单一方程约化成(1+1)维非线性偏微分方程,应用广义同宿测试方法求解该约化的(1+1)维方程,得到了(2+1)维KD方程新的非行波孤子相互作用解,并分析... 本文通过退耦变换将(2+1)维Konopelchenko-Dubrovsky方程化成单一方程,利用Lie群理论将所得单一方程约化成(1+1)维非线性偏微分方程,应用广义同宿测试方法求解该约化的(1+1)维方程,得到了(2+1)维KD方程新的非行波孤子相互作用解,并分析了它们的局部结构. 展开更多
关键词 (2+1)维konopelchenko-Dubrovsky方程 LIE对称 广义同宿测试法 非行波孤子
原文传递
(2+1)维Konopelchenko-Dubrovsky方程新的多孤子解 被引量:2
12
作者 叶彩儿 张卫国 《物理学报》 SCIE EI CAS CSCD 北大核心 2010年第8期5229-5234,共6页
利用齐次平衡方法,将(2+1)维Konopelchenko-Dubrovsky方程转化为两个变量分离的线性偏微分方程,然后采用三种不同的函数假设,得到相应的常系数微分方程,通过求解特征方程,方便地构造出Konopelchenko-Dubrovsky方程新的多孤子解.
关键词 (2+1)维konopelchenko-Dubrovsky方程 齐次平衡法 多孤子解
原文传递
Lump Solutions for Two Mixed Calogero-Bogoyavlenskii-Schiff and Bogoyavlensky-Konopelchenko Equations
13
作者 Bo Ren Wen-Xiu Ma Jun Yu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第6期658-662,共5页
Based on the Hirota bilinear operators and their generalized bilinear derivatives, we formulate two new(2+1)-dimensional nonlinear partial differential equations, which possess lumps. One of the new nonlinear differen... Based on the Hirota bilinear operators and their generalized bilinear derivatives, we formulate two new(2+1)-dimensional nonlinear partial differential equations, which possess lumps. One of the new nonlinear differential equations includes the generalized Calogero-Bogoyavlenskii-Schiff equation and the generalized BogoyavlenskyKonopelchenko equation as particular examples, and the other has the same bilinear form with different Dp-operators.A class explicit lump solutions of the new nonlinear differential equation is constructed by using the Hirota bilinear approaches. A specific case of the presented lump solution is plotted to shed light on the charateristics of the lump. 展开更多
关键词 GENERALIZED Calogero-Bogoyavlenskii-Schiff EQUATION GENERALIZED Bogoyavlensky-konopelchenko EQUATION HIROTA bilinear Lump solution
原文传递
Analysis on Lump, Lumpoff and Rogue Waves with Predictability to a Generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt Equation
14
作者 Wen-Hao Liu Yu-Feng Zhang Dan-Dan Shi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第6期670-676,共7页
In this paper, we investigate a(2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation. The lump waves, lumpoff waves, and rogue waves are presented based on the Hirota bilinear form of this eq... In this paper, we investigate a(2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation. The lump waves, lumpoff waves, and rogue waves are presented based on the Hirota bilinear form of this equation. It is worth noting that the moving path as well as the appearance time and place of the lump waves are given. Moreover, the special rogue waves are considered when lump solution is swallowed by double solitons. Finally,the corresponding characteristics of the dynamical behavior are displayed. 展开更多
关键词 konopelchenko-Dubrovsky-Kaup-Kupershmidt EQUATION lump WAVES lumpoff WAVES rogue WAVES
原文传递
Soliton molecules and some novel hybrid solutions for the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation
15
作者 Hongcai Ma Qiaoxin Cheng Aiping Deng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2020年第9期1-7,共7页
Soliton molecules have become one of the hot topics in recent years. In this article, we investigate soliton molecules and some novel hybrid solutions for the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kau... Soliton molecules have become one of the hot topics in recent years. In this article, we investigate soliton molecules and some novel hybrid solutions for the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt(gKDKK) equation by using the velocity resonance, module resonance, and long wave limits methods. By selecting some specific parameters, we can obtain soliton molecules and asymmetric soliton molecules of the gKDKK equation. And the interactions among N-soliton molecules are elastic. Furthermore, some novel hybrid solutions of the gKDKK equation can be obtained, which are composed of lumps,breathers, soliton molecules and asymmetric soliton molecules. Finally, the images of soliton molecules and some novel hybrid solutions are given, and their dynamic behavior is analyzed. 展开更多
关键词 the(2+1)-dimensional generalized konopelchenko–Dubrovsky–Kaup–Kupershmidt equation soliton molecules hybrid solutions velocity resonance long-wave limit
原文传递
Lie symmetry analysis and invariant solutions for(2+1) dimensional Bogoyavlensky-Konopelchenko equation with variable-coefficient in wave propagation
16
作者 Mohamed R.Ali Wen-Xiu Ma R.Sadat 《Journal of Ocean Engineering and Science》 SCIE 2022年第3期248-254,共7页
This work aims to present nonlinear models that arise in ocean engineering.There are many models of ocean waves that are present in nature.In shallow water,the linearization of the equations requires critical conditio... This work aims to present nonlinear models that arise in ocean engineering.There are many models of ocean waves that are present in nature.In shallow water,the linearization of the equations requires critical conditions on wave capacity than it make in deep water,and the strong nonlinear belongings are spotted.We use Lie symmetry analysis to obtain different types of soliton solutions like one,two,and three-soliton solutions in a(2+1)dimensional variable-coefficient Bogoyavlensky Konopelchenko(VCBK)equation that describes the interaction of a Riemann wave reproducing along the y-axis and a long wave reproducing along the x-axis in engineering and science.We use the Lie symmetry analysis then the integrating factor method to obtain new solutions of the VCBK equation.To demonstrate the physical meaning of the solutions obtained by the presented techniques,the graphical performance has been demonstrated with some values.The presented equation has fewer dimensions and is reduced to ordinary differential equations using the Lie symmetry technique. 展开更多
关键词 Symmetry approach SOLITONS Partial differential equations The variable coefficients(2+1)-dimensional Bogoyavlensky konopelchenko equation Nonlinear evolution equations
原文传递
利用(G′/G)-展开法求非线性方程的精确解
17
作者 董长紫 《吉首大学学报(自然科学版)》 CAS 2014年第3期15-19,共5页
利用符号计算软件Maple,通过(G′/G)-展开法,得到Burgers-Fisher方程和Konopelchenko-Durovsky程组的几组新的更广义类型的精确解.
关键词 BURGERS-FISHER方程 konopelchenko-Durovsky方程组 (G' G)-展开法 精确解 符号计算
下载PDF
Applications of (G1/G2)-expanslon Method in Solving Nonlinear Fractional Differential Equations 被引量:1
18
作者 KANG Zhou-zheng 《Chinese Quarterly Journal of Mathematics》 2017年第3期261-270,共10页
In the current paper, based on fractional complex transformation, the GG2-expansion method which is used to solve differential equations of integer order is developed for finding exact solutions of nonlinear fractiona... In the current paper, based on fractional complex transformation, the GG2-expansion method which is used to solve differential equations of integer order is developed for finding exact solutions of nonlinear fractional differential equations with Jumarie's modified Riemann-Liouville derivative. And then, time-fractional Burgers equation and space-fractional coupled Konopelchenko-Dubrovsky equations are provided to show that this method is effective in solving nonlinear fractional differential equations. 展开更多
关键词 time-fractional Burgers equation space-fractional coupled konopelchenko-Dubrovsky equations exact solutions
下载PDF
Soliton molecules,T-breather molecules and some interaction solutions in the(2+1)-dimensional generalized KDKK equation
19
作者 张艺源 刘子琪 +1 位作者 齐家馨 安红利 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期164-173,共10页
By employing the complexification method and velocity resonant principle to N-solitons of the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt(KDKK)equation,we obtain the soliton molecules,T-br... By employing the complexification method and velocity resonant principle to N-solitons of the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt(KDKK)equation,we obtain the soliton molecules,T-breather molecules,T-breather–L-soliton molecules and some interaction solutions when N≤6.Dynamical behaviors of these solutions are discussed analytically and graphically.The method adopted can be effectively used to construct soliton molecules and T-breather molecules of other nonlinear evolution equations.The results obtained may be helpful for experts to study the related phenomenon in oceanography and atmospheric science. 展开更多
关键词 soliton molecules breather molecules interaction solutions velocity resonant principle konopelchenko–Dubrovsky–Kaup–Kupershmidt(KDKK)equation
下载PDF
求解高维非线性演化方程的一个新方法 被引量:1
20
作者 佟静林 张盛 《渤海大学学报(自然科学版)》 CAS 2008年第3期238-241,共4页
将王明亮等人提出的一种新方法-(G′/G)扩展法推广到高维的非线性演化方程。作为其应用的一个例子,获得(2+1)维Konopelchenko-Dubovsky方程带有任意参数形式的双曲函数解,三角函数解和有理数解,通过适当选择的参数,很多已知的解能被重... 将王明亮等人提出的一种新方法-(G′/G)扩展法推广到高维的非线性演化方程。作为其应用的一个例子,获得(2+1)维Konopelchenko-Dubovsky方程带有任意参数形式的双曲函数解,三角函数解和有理数解,通过适当选择的参数,很多已知的解能被重新得到。本扩展方法可以进一步应用到其它一大批高维的非线性演化方程。 展开更多
关键词 高维非线性演化方程 G′/G 扩展法 (2+1)维KD方程 双曲函数解 三角函数解 有理数解
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部