This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With th...The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With the aid of symbolic computation, the discrete matrix spectral problem for that system is constructed. Darboux transformation for that system is established based on the resulting spectral problem. Explicit solutions are derived via the Darboux transformation. Structures of those solutions are shown graphically, which might be helpful to understand some physical processes in fluids, plasmas, and optics.展开更多
In this paper, we put our focus on a variable-coe^cient fifth-order Korteweg-de Vries (fKdV) equation, which possesses a great number of excellent properties and is of current importance in physical and engineering ...In this paper, we put our focus on a variable-coe^cient fifth-order Korteweg-de Vries (fKdV) equation, which possesses a great number of excellent properties and is of current importance in physical and engineering fields. Certain constraints are worked out, which make sure the integrability of such an equation. Under those constraints, some integrable properties are derived, such as the Lax pair and Darboux transformation. Via the Darboux transformation, which is an exercisable way to generate solutions in a recursive manner, the one- and two-solitonic solutions are presented and the relevant physical applications of these solitonic structures in some fields are also pointed out.展开更多
The coupled semi-discrete modified Korteweg-de Vries equation in (2+1)-dimensions is proposed, it is shown that it, can be decomposed into two (1+1)-dimensional differential-difference equations belonging to mKd...The coupled semi-discrete modified Korteweg-de Vries equation in (2+1)-dimensions is proposed, it is shown that it, can be decomposed into two (1+1)-dimensional differential-difference equations belonging to mKdV lattice hierarchy by considering a discrete isospeetral problem. A Darboux transformation is set up for the resulting (2+1)- dimensional lattice soliton equation with the help of gauge transformations of Lax pairs. As an illustration by example, the soliton solutions of the mKdV lartice equation in (2+1)-dimensions are explicitly given,展开更多
In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear fo...In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear form and symbolic computation are applied to obtain three kinds of solutions. Variable coefficients can affect the conserved density, associated flux, and appearance of the characteristic lines. Effects of the wave number on the soliton structures are also discussed and types of soliton structures, e.g., the double-periodic soliton, parallel soliton and soliton complexes, are presented.展开更多
A perturbation method is introduced in the context of dynamical system for solving the nonlinear Korteweg-de Vries (KdV) equation. Best efficiency is obtained for few perturbative corrections. It is shown that, the qu...A perturbation method is introduced in the context of dynamical system for solving the nonlinear Korteweg-de Vries (KdV) equation. Best efficiency is obtained for few perturbative corrections. It is shown that, the question of convergence of this approach is completely guaranteed here, because a limited number of term included in the series can describe a sufficient exact solution. Comparisons with the solutions of the quintic spline, and finite difference are presented.展开更多
The travelling solitary wave solutions to the higher order Korteweg-de Vries equation are obtained by using tanh-polynomial method. The method is effective and concise, which is also applied to various partial differe...The travelling solitary wave solutions to the higher order Korteweg-de Vries equation are obtained by using tanh-polynomial method. The method is effective and concise, which is also applied to various partial differential equations to obtain traveling wave solutions. The numerical simulation of the solutions is given for completeness. Numerical results show that the tanh-polynomial method works quite well.展开更多
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
基金Project supported by the National Natural Science Foundation of China(11571225)the Scientific Research Foundation(SRF) for the Returned Overseas Chinese Scholarsthe Shanghai Leading Academic Discipline Project(J50101)
基金Supported by the National Natural Science Foundation of China under Grant No. 60772023by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. BUAA-SKLSDE-09KF-04+2 种基金Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006Chinese Ministry of Education, and Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No. KM201010772020
文摘The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With the aid of symbolic computation, the discrete matrix spectral problem for that system is constructed. Darboux transformation for that system is established based on the resulting spectral problem. Explicit solutions are derived via the Darboux transformation. Structures of those solutions are shown graphically, which might be helpful to understand some physical processes in fluids, plasmas, and optics.
基金The project supported by the Key Project of the Chinese Ministry of Education under Grant No.106033the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060006024+2 种基金Chinese Ministry of Education,the National Natural Science Foundation of China under Grant Nos.60772023 and 60372095the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.SKLSDE-07-001Beijing University of Aeronautics and Astronautics,and by the National Basic Research Program of China(973 Program)under Grant No.2005CB321901
文摘In this paper, we put our focus on a variable-coe^cient fifth-order Korteweg-de Vries (fKdV) equation, which possesses a great number of excellent properties and is of current importance in physical and engineering fields. Certain constraints are worked out, which make sure the integrability of such an equation. Under those constraints, some integrable properties are derived, such as the Lax pair and Darboux transformation. Via the Darboux transformation, which is an exercisable way to generate solutions in a recursive manner, the one- and two-solitonic solutions are presented and the relevant physical applications of these solitonic structures in some fields are also pointed out.
基金The roject partially supported by National Natural Science Foundation of China under Grant No. 60572113
文摘The coupled semi-discrete modified Korteweg-de Vries equation in (2+1)-dimensions is proposed, it is shown that it, can be decomposed into two (1+1)-dimensional differential-difference equations belonging to mKdV lattice hierarchy by considering a discrete isospeetral problem. A Darboux transformation is set up for the resulting (2+1)- dimensional lattice soliton equation with the help of gauge transformations of Lax pairs. As an illustration by example, the soliton solutions of the mKdV lartice equation in (2+1)-dimensions are explicitly given,
基金Supported by the National Natural Science Foundation of China under Grant No.60772023by the Slpported Project under Grant No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and As tronautics+2 种基金by the Specialized Research Fund for the Doctoral Program of Higher Educatioi under Grant No.200800130006Chinese Ministry of Education,and by the Innovation Foundation for Ph.D.Graduates under Grant Nos.30-0350 and 30-0366Beijing University of Aeronautics and Astronautics
文摘In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear form and symbolic computation are applied to obtain three kinds of solutions. Variable coefficients can affect the conserved density, associated flux, and appearance of the characteristic lines. Effects of the wave number on the soliton structures are also discussed and types of soliton structures, e.g., the double-periodic soliton, parallel soliton and soliton complexes, are presented.
基金Project (No. D0701/01/05) supported by Ministry of the Educationand Scientific Research (M.E.S.R), Algeria
文摘A perturbation method is introduced in the context of dynamical system for solving the nonlinear Korteweg-de Vries (KdV) equation. Best efficiency is obtained for few perturbative corrections. It is shown that, the question of convergence of this approach is completely guaranteed here, because a limited number of term included in the series can describe a sufficient exact solution. Comparisons with the solutions of the quintic spline, and finite difference are presented.
文摘The travelling solitary wave solutions to the higher order Korteweg-de Vries equation are obtained by using tanh-polynomial method. The method is effective and concise, which is also applied to various partial differential equations to obtain traveling wave solutions. The numerical simulation of the solutions is given for completeness. Numerical results show that the tanh-polynomial method works quite well.