This paper is to investigate a variable-coefficient modified Kortweg-de Vries (vc-mKdV) model, which describes some situations from fluid mechanics, ocean dynamics, and plasma mechanics. By the AblowRz-Kaup-NewellSe...This paper is to investigate a variable-coefficient modified Kortweg-de Vries (vc-mKdV) model, which describes some situations from fluid mechanics, ocean dynamics, and plasma mechanics. By the AblowRz-Kaup-NewellSegur procedure and symbolic computation, the Lax pair of the vc-MKdV model is derived. Then, based on the aforementioned Lax pair, the Darboux transformation is constructed and a new one-soliton-like solution is obtained as weft Features of the one-soliton-like solution are analyzed and graphically discussed to illustrate the influence of the variable coefficients in the solitonlike propagation.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 60772023by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. BUAA-SKLSDE-09KF-04+1 种基金Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006, Chinese Ministry of Education
文摘This paper is to investigate a variable-coefficient modified Kortweg-de Vries (vc-mKdV) model, which describes some situations from fluid mechanics, ocean dynamics, and plasma mechanics. By the AblowRz-Kaup-NewellSegur procedure and symbolic computation, the Lax pair of the vc-MKdV model is derived. Then, based on the aforementioned Lax pair, the Darboux transformation is constructed and a new one-soliton-like solution is obtained as weft Features of the one-soliton-like solution are analyzed and graphically discussed to illustrate the influence of the variable coefficients in the solitonlike propagation.