This note is concerned with the H-infinity deconvolution filtering problem for linear time-varying discretetime systems described by state space models, The H-infinity deconvolution filter is derived by proposing a ne...This note is concerned with the H-infinity deconvolution filtering problem for linear time-varying discretetime systems described by state space models, The H-infinity deconvolution filter is derived by proposing a new approach in Krein space. With the new approach, it is clearly shown that the central deconvolution filter in an H-infinity setting is the same as the one in an H2 setting associated with one constructed stochastic state-space model. This insight allows us to calculate the complicated H-infinity deconvolution filter in an intuitive and simple way. The deconvolution filter is calculated by performing Riccati equation with the same order as that of the original system.展开更多
A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then...A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.展开更多
We consider plus-operators in Krein spaces and generated operator linear fractional relations of the following form: . We study some special type of factorization for plus-operators T, among them the following one: T ...We consider plus-operators in Krein spaces and generated operator linear fractional relations of the following form: . We study some special type of factorization for plus-operators T, among them the following one: T = BU, where B is a lower triangular plus-operator, U is a J-unitary operator. We apply the above factorization to the study of basical properties of relations (1), in particular, convexity and compactness of their images with respect to the weak operator topology. Obtained results we apply to the known Koenigs embedding problem, the Krein-Phillips problem of existing of invariant semidefinite subspaces for some families of plus-operators and to some other fields.展开更多
This paper aims to introduce some new ideas into the study of submodules in Hilbert spaces of analytic functions. The effort is laid out in the Hardy space over the bidisk H^2(D^2). A closed subspace M in H^2(D^2) is ...This paper aims to introduce some new ideas into the study of submodules in Hilbert spaces of analytic functions. The effort is laid out in the Hardy space over the bidisk H^2(D^2). A closed subspace M in H^2(D^2) is called a submodule if ziM ? M(i = 1, 2). An associated integral operator(defect operator) CM captures much information about M. Using a Kre??n space indefinite metric on the range of CM, this paper gives a representation of M. Then it studies the group(called Lorentz group) of isometric self-maps of M with respect to the indefinite metric, and in finite rank case shows that the Lorentz group is a complete invariant for congruence relation. Furthermore, the Lorentz group contains an interesting abelian subgroup(called little Lorentz group) which turns out to be a finer invariant for M.展开更多
In the traditional theoretical descriptions of microscopic physical systems (typically, atoms and molecules) people strongly relied upon analogies between the classical mechanics and quantum theory. Naturally, such ...In the traditional theoretical descriptions of microscopic physical systems (typically, atoms and molecules) people strongly relied upon analogies between the classical mechanics and quantum theory. Naturally, such a methodical framework proved limited as it excluded, up to the recent past, multiple, less intuitively accessible phenomenological models from the serious consideration. For this reason, the classical-quantum parallels were steadily weakened, preserving still the basic and robust abstract version of the key Copenhagen-school concept of treating the states of microscopic systems as elements of a suitable linear Hilbert space. Less than 20 years ago, finally, powerful innovations emerged on mathematical side. Various less standard representations of the Hilbert space entered the game. Pars pro toto, one might recall the Dyson's representation of the so-called interacting boson model in nuclear physics, or the steady increase of popularity of certain apparently non-Hermitian interactions in field theory. In the first half of the author's present paper the recent heuristic progress as well as phenomenologieal success of the similar use of non-Hermitian Ham iltonians will be reviewed, being characterized by their self-adjoint form in an auxiliary Krein space K. In the second half of the author's text a further extension of the scope of such a mathematically innovative approach to the physical quantum theory is proposed. The author's key idea lies in the recommendation of the use of the more general versions of the indefinite metrics in the space of states (note that in the Krein-space case the corresponding indefinite metric P is mostly treated as operator of parity). Thus, the author proposes that the operators P should be admitted to represent, in general, the indefinite metric in a Pontryagin space. A constructive version of such a generalized quantization strategy is outlined and found feasible.展开更多
In the traditional unscented Kalman filter(UKF),accuracy and robustness decline when uncertain disturbances exist in the practical system.To deal with the problem,a robust UKF algorithm based on an H-infinity norm i...In the traditional unscented Kalman filter(UKF),accuracy and robustness decline when uncertain disturbances exist in the practical system.To deal with the problem,a robust UKF algorithm based on an H-infinity norm is proposed.In Krein space,a robust element is added in the simplified UKF so as to improve the algorithm.The filtering gain is adjusted by the robust element and in this way the performance of the robustness of the filtering algorithm is promoted.In the initial alignment process of the large heading misalignment angle of the strapdown inertial navigation system(SINS),comparative studies are conducted on the robust UKF and the simplified UKF.The simulation results illustrate that compared with the simplified UKF,the robust UKF is more accurate,and the estimation error of heading misalignment decreases from 16.9' to 4.3'.In short,the robust UKF can reduce the sensitivity to the system disturbances resulting in better performance.展开更多
The spectrum of a class of fourth order left-definite differential operators is studied. By using the theory of indefinite differential operators in Krein space and the relationship between left-definite and right-def...The spectrum of a class of fourth order left-definite differential operators is studied. By using the theory of indefinite differential operators in Krein space and the relationship between left-definite and right-definite operators, the following conclusions are obtained: if a fourth order differential operator with a self-adjoint boundary condition that is left-definite and right-indefinite, then all its eigenvalues are real, and there exist countably infinitely many positive and negative eigenvalues which are unbounded from below and above, have no finite cluster point and can be indexed to satisfy the inequality …≤λ-2≤λ-1≤λ-0〈0〈λ0≤λ1≤λ2≤…展开更多
基金supported by the National Natural Science Foundation of China (No.60574016,60804034)the Natural Science Foundation of Shandong Province (No.Y2007G34)+2 种基金the National Natural Science Foundation for Distinguished Youth Scholars of China (No.60825304)973 Program (No.2009cb320600)the first two authors are also supported by "Taishan Scholarship" Construction Engineering
文摘This note is concerned with the H-infinity deconvolution filtering problem for linear time-varying discretetime systems described by state space models, The H-infinity deconvolution filter is derived by proposing a new approach in Krein space. With the new approach, it is clearly shown that the central deconvolution filter in an H-infinity setting is the same as the one in an H2 setting associated with one constructed stochastic state-space model. This insight allows us to calculate the complicated H-infinity deconvolution filter in an intuitive and simple way. The deconvolution filter is calculated by performing Riccati equation with the same order as that of the original system.
基金supported by the National Natural Science Foundation of China (51179039)the Ph.D. Programs Foundation of Ministry of Education of China (20102304110021)
文摘A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.
基金Supported by National Natural Science Foundation of China (60774071), the Doctoral Program Foundation of Education Ministry of China (20050422036), and Shandong Scientific and Research Grant.(2005BS01007.)
文摘这份报纸处理 H 差错评价的问题因为有 L2 标准的线性分离变化时间的系统的一个类围住未知输入。主要贡献是 H 差错评价的一条新 Krein 基于空间的途径的发展。H 差错评价的问题第一被等同到一种分级的二次的形式的最小。由在 Krein 空格介绍一个相应系统,然后,一个 H 差错评估者的存在上的一个足够、必要的条件被导出,它的参数矩阵的一个答案以矩阵 Riccati 方程被获得。最后,二个数字例子被给表明建议方法的效率。
文摘We consider plus-operators in Krein spaces and generated operator linear fractional relations of the following form: . We study some special type of factorization for plus-operators T, among them the following one: T = BU, where B is a lower triangular plus-operator, U is a J-unitary operator. We apply the above factorization to the study of basical properties of relations (1), in particular, convexity and compactness of their images with respect to the weak operator topology. Obtained results we apply to the known Koenigs embedding problem, the Krein-Phillips problem of existing of invariant semidefinite subspaces for some families of plus-operators and to some other fields.
基金supported by Grant-in-Aid for Young Scientists(B)(Grant No.23740106)
文摘This paper aims to introduce some new ideas into the study of submodules in Hilbert spaces of analytic functions. The effort is laid out in the Hardy space over the bidisk H^2(D^2). A closed subspace M in H^2(D^2) is called a submodule if ziM ? M(i = 1, 2). An associated integral operator(defect operator) CM captures much information about M. Using a Kre??n space indefinite metric on the range of CM, this paper gives a representation of M. Then it studies the group(called Lorentz group) of isometric self-maps of M with respect to the indefinite metric, and in finite rank case shows that the Lorentz group is a complete invariant for congruence relation. Furthermore, the Lorentz group contains an interesting abelian subgroup(called little Lorentz group) which turns out to be a finer invariant for M.
文摘In the traditional theoretical descriptions of microscopic physical systems (typically, atoms and molecules) people strongly relied upon analogies between the classical mechanics and quantum theory. Naturally, such a methodical framework proved limited as it excluded, up to the recent past, multiple, less intuitively accessible phenomenological models from the serious consideration. For this reason, the classical-quantum parallels were steadily weakened, preserving still the basic and robust abstract version of the key Copenhagen-school concept of treating the states of microscopic systems as elements of a suitable linear Hilbert space. Less than 20 years ago, finally, powerful innovations emerged on mathematical side. Various less standard representations of the Hilbert space entered the game. Pars pro toto, one might recall the Dyson's representation of the so-called interacting boson model in nuclear physics, or the steady increase of popularity of certain apparently non-Hermitian interactions in field theory. In the first half of the author's present paper the recent heuristic progress as well as phenomenologieal success of the similar use of non-Hermitian Ham iltonians will be reviewed, being characterized by their self-adjoint form in an auxiliary Krein space K. In the second half of the author's text a further extension of the scope of such a mathematically innovative approach to the physical quantum theory is proposed. The author's key idea lies in the recommendation of the use of the more general versions of the indefinite metrics in the space of states (note that in the Krein-space case the corresponding indefinite metric P is mostly treated as operator of parity). Thus, the author proposes that the operators P should be admitted to represent, in general, the indefinite metric in a Pontryagin space. A constructive version of such a generalized quantization strategy is outlined and found feasible.
基金The National Basic Research Program of China (973 Program) (No. 613121010202)
文摘In the traditional unscented Kalman filter(UKF),accuracy and robustness decline when uncertain disturbances exist in the practical system.To deal with the problem,a robust UKF algorithm based on an H-infinity norm is proposed.In Krein space,a robust element is added in the simplified UKF so as to improve the algorithm.The filtering gain is adjusted by the robust element and in this way the performance of the robustness of the filtering algorithm is promoted.In the initial alignment process of the large heading misalignment angle of the strapdown inertial navigation system(SINS),comparative studies are conducted on the robust UKF and the simplified UKF.The simulation results illustrate that compared with the simplified UKF,the robust UKF is more accurate,and the estimation error of heading misalignment decreases from 16.9' to 4.3'.In short,the robust UKF can reduce the sensitivity to the system disturbances resulting in better performance.
基金Supported by the National Natural Science Foundation of China(10561005)the Doctor's Discipline Fund of the Ministry of Education of China(20040126008)
文摘The spectrum of a class of fourth order left-definite differential operators is studied. By using the theory of indefinite differential operators in Krein space and the relationship between left-definite and right-definite operators, the following conclusions are obtained: if a fourth order differential operator with a self-adjoint boundary condition that is left-definite and right-indefinite, then all its eigenvalues are real, and there exist countably infinitely many positive and negative eigenvalues which are unbounded from below and above, have no finite cluster point and can be indexed to satisfy the inequality …≤λ-2≤λ-1≤λ-0〈0〈λ0≤λ1≤λ2≤…