Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction me...Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction method.This makes the accuracy of the surrogate model highly dependent on the experience of users and affects the accuracy of IMU methods.Therefore,an improved IMU method via the adaptive Kriging models is proposed.This method transforms the objective function of the IMU problem into two deterministic global optimization problems about the upper bound and the interval diameter through universal grey numbers.These optimization problems are addressed through the adaptive Kriging models and the particle swarm optimization(PSO)method to quantify the uncertain parameters,and the IMU is accomplished.During the construction of these adaptive Kriging models,the sample space is gridded according to sensitivity information.Local sampling is then performed in key subspaces based on the maximum mean square error(MMSE)criterion.The interval division coefficient and random sampling coefficient are adaptively adjusted without human interference until the model meets accuracy requirements.The effectiveness of the proposed method is demonstrated by a numerical example of a three-degree-of-freedom mass-spring system and an experimental example of a butted cylindrical shell.The results show that the updated results of the interval model are in good agreement with the experimental results.展开更多
Hot plane strain compression tests of 6013 aluminum alloy were conducted within the temperature range of 613?773 K and the strain rate range of 0.001?10 s?1. Based on the corrected experimental data with temperature c...Hot plane strain compression tests of 6013 aluminum alloy were conducted within the temperature range of 613?773 K and the strain rate range of 0.001?10 s?1. Based on the corrected experimental data with temperature compensation, Kriging method is selected to model the constitutive relationship among flow stress, temperature, strain rate and strain. The predictability and reliability of the constructed Kriging model are evaluated by statistical measures, comparative analysis and leave-one-out cross-validation (LOO-CV). The accuracy of Kriging model is validated by the R-value of 0.999 and the AARE of 0.478%. Meanwhile, its superiority has been demonstrated while comparing with the improved Arrhenius-type model. Furthermore, the generalization capability of Kriging model is identified by LOO-CV with 25 times of testing. It is indicated that Kriging method is competent to develop accurate model for describing the hot deformation behavior and predicting the flow stress even beyond the experimental conditions in hot compression tests.展开更多
An exploratory spatial data analysis method (ESDA) was designed Apr.28,2002 for kriging monthly rainfall. Samples were monthly rainfall observed at 61 weather stations in eastern China over the period 1961-1998. Comp...An exploratory spatial data analysis method (ESDA) was designed Apr.28,2002 for kriging monthly rainfall. Samples were monthly rainfall observed at 61 weather stations in eastern China over the period 1961-1998. Comparison of five semivariogram models (Spherical, Exponential, Linear, Gaussian and Rational Quadratic) indicated that kriging fulfills the objective of finding better ways to estimate interpolation weights and can provide error information for monthly rainfall interpolation. ESDA yielded the three most common forms of experimental semivariogram for monthly rainfall in the area. All five models were appropriate for monthly rainfall interpolation but under different circumstances. Spherical, Exponential and Linear models perform as smoothing interpolator of the data, whereas Gaussian and Rational Quadratic models serve as an exact interpolator. Spherical, Exponential and Linear models tend to underestimate the values. On the contrary, Gaussian and Rational Quadratic models tend to overestimate the values. Since the suitable model for a specific month usually is not unique and each model does not show any bias toward one or more specific months, an ESDA is recommended for a better interpolation result.展开更多
This paper is devoted to the probabilistic stability analysis of a tunnel face excavated in a two-layer soil. The interface of the soil layers is assumed to be positioned above the tunnel roof. In the framework of lim...This paper is devoted to the probabilistic stability analysis of a tunnel face excavated in a two-layer soil. The interface of the soil layers is assumed to be positioned above the tunnel roof. In the framework of limit analysis, a rotational failure mechanism is adopted to describe the face failure considering different shear strength parameters in the two layers. The surrogate Kriging model is introduced to replace the actual performance function to perform a Monte Carlo simulation. An active learning function is used to train the Kriging model which can ensure an efficient tunnel face failure probability prediction without loss of accuracy. The deterministic stability analysis is given to validate the proposed tunnel face failure model. Subsequently, the number of initial sampling points, the correlation coefficient, the distribution type and the coefficient of variability of random variables are discussed to show their influences on the failure probability. The proposed approach is an advisable alternative for the tunnel face stability assessment and can provide guidance for tunnel design.展开更多
In order to study the variation of machine tools’dynamic characteristics in the manufacturing space,a Kriging approximate model is proposed.Finite element method(FEM)is employed on the platform of ANSYS to establish ...In order to study the variation of machine tools’dynamic characteristics in the manufacturing space,a Kriging approximate model is proposed.Finite element method(FEM)is employed on the platform of ANSYS to establish finite element(FE)model with the dynamic characteristic of combined interface for a milling machine,which is newly designed for producing aero engine blades by a certain enterprise group in China.The stiffness and damping of combined interfaces are adjusted by using adaptive simulated annealing algorithm with the optimizing software of iSIGHT in the process of FE model update according to experimental modal analysis(EMA)results.The Kriging approximate model is established according to the finite element analysis results utilizing orthogonal design samples by taking into account of the range of configuration parameters.On the basis of the Kriging approximate model,the response surfaces between key response parameter and configuration parameters are obtained.The results indicate that configuration parameters have great effects on dynamic characteristics of machine tools,and the Kriging approximate model is an effective and rapid method for estimating dynamic characteristics of machine tools in the manufacturing space.展开更多
To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example an...To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example and Fluent software was applied to the virtual prototype simulations. Through simulation sample points, the total lift of the ducted coaxial-rotors aircraft was obtained. The Kriging model was then constructed, and the function was fitted. Improved particle swarm optimization(PSO) was also utilized for the global optimization of the Kriging model of the ducted coaxial-rotors aircraft for the determination of optimized global coordinates. Finally, the optimized results were simulated by Fluent. The results show that the Kriging model and the improved PSO algorithm significantly improve the lift performance of ducted coaxial-rotors aircraft and computer operational efficiency.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12272211,12072181,12121002)。
文摘Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction method.This makes the accuracy of the surrogate model highly dependent on the experience of users and affects the accuracy of IMU methods.Therefore,an improved IMU method via the adaptive Kriging models is proposed.This method transforms the objective function of the IMU problem into two deterministic global optimization problems about the upper bound and the interval diameter through universal grey numbers.These optimization problems are addressed through the adaptive Kriging models and the particle swarm optimization(PSO)method to quantify the uncertain parameters,and the IMU is accomplished.During the construction of these adaptive Kriging models,the sample space is gridded according to sensitivity information.Local sampling is then performed in key subspaces based on the maximum mean square error(MMSE)criterion.The interval division coefficient and random sampling coefficient are adaptively adjusted without human interference until the model meets accuracy requirements.The effectiveness of the proposed method is demonstrated by a numerical example of a three-degree-of-freedom mass-spring system and an experimental example of a butted cylindrical shell.The results show that the updated results of the interval model are in good agreement with the experimental results.
基金Project(51475156)supported by the National Natural Science Foundation of ChinaProject(2014ZX04002071)supported by the National Key Project of Science and Technology of ChinaProject(GXKFJ14-08)supported by the Opening Foundation of Key Laboratory for Non-Ferrous Metal and Featured Material Processing,Guangxi Zhuang Autonomous Region,China
文摘Hot plane strain compression tests of 6013 aluminum alloy were conducted within the temperature range of 613?773 K and the strain rate range of 0.001?10 s?1. Based on the corrected experimental data with temperature compensation, Kriging method is selected to model the constitutive relationship among flow stress, temperature, strain rate and strain. The predictability and reliability of the constructed Kriging model are evaluated by statistical measures, comparative analysis and leave-one-out cross-validation (LOO-CV). The accuracy of Kriging model is validated by the R-value of 0.999 and the AARE of 0.478%. Meanwhile, its superiority has been demonstrated while comparing with the improved Arrhenius-type model. Furthermore, the generalization capability of Kriging model is identified by LOO-CV with 25 times of testing. It is indicated that Kriging method is competent to develop accurate model for describing the hot deformation behavior and predicting the flow stress even beyond the experimental conditions in hot compression tests.
文摘An exploratory spatial data analysis method (ESDA) was designed Apr.28,2002 for kriging monthly rainfall. Samples were monthly rainfall observed at 61 weather stations in eastern China over the period 1961-1998. Comparison of five semivariogram models (Spherical, Exponential, Linear, Gaussian and Rational Quadratic) indicated that kriging fulfills the objective of finding better ways to estimate interpolation weights and can provide error information for monthly rainfall interpolation. ESDA yielded the three most common forms of experimental semivariogram for monthly rainfall in the area. All five models were appropriate for monthly rainfall interpolation but under different circumstances. Spherical, Exponential and Linear models perform as smoothing interpolator of the data, whereas Gaussian and Rational Quadratic models serve as an exact interpolator. Spherical, Exponential and Linear models tend to underestimate the values. On the contrary, Gaussian and Rational Quadratic models tend to overestimate the values. Since the suitable model for a specific month usually is not unique and each model does not show any bias toward one or more specific months, an ESDA is recommended for a better interpolation result.
基金Projects supported by the China Scholarship Council
文摘This paper is devoted to the probabilistic stability analysis of a tunnel face excavated in a two-layer soil. The interface of the soil layers is assumed to be positioned above the tunnel roof. In the framework of limit analysis, a rotational failure mechanism is adopted to describe the face failure considering different shear strength parameters in the two layers. The surrogate Kriging model is introduced to replace the actual performance function to perform a Monte Carlo simulation. An active learning function is used to train the Kriging model which can ensure an efficient tunnel face failure probability prediction without loss of accuracy. The deterministic stability analysis is given to validate the proposed tunnel face failure model. Subsequently, the number of initial sampling points, the correlation coefficient, the distribution type and the coefficient of variability of random variables are discussed to show their influences on the failure probability. The proposed approach is an advisable alternative for the tunnel face stability assessment and can provide guidance for tunnel design.
基金Project(2009ZX04001-073)supported by the Important National Science&Technology Specific Projects of ChinaProject(51105025)supported by the National Natural Science Foundation of China
文摘In order to study the variation of machine tools’dynamic characteristics in the manufacturing space,a Kriging approximate model is proposed.Finite element method(FEM)is employed on the platform of ANSYS to establish finite element(FE)model with the dynamic characteristic of combined interface for a milling machine,which is newly designed for producing aero engine blades by a certain enterprise group in China.The stiffness and damping of combined interfaces are adjusted by using adaptive simulated annealing algorithm with the optimizing software of iSIGHT in the process of FE model update according to experimental modal analysis(EMA)results.The Kriging approximate model is established according to the finite element analysis results utilizing orthogonal design samples by taking into account of the range of configuration parameters.On the basis of the Kriging approximate model,the response surfaces between key response parameter and configuration parameters are obtained.The results indicate that configuration parameters have great effects on dynamic characteristics of machine tools,and the Kriging approximate model is an effective and rapid method for estimating dynamic characteristics of machine tools in the manufacturing space.
基金Project(2013AA063903)supported by High-tech Research and Development Program of China
文摘To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example and Fluent software was applied to the virtual prototype simulations. Through simulation sample points, the total lift of the ducted coaxial-rotors aircraft was obtained. The Kriging model was then constructed, and the function was fitted. Improved particle swarm optimization(PSO) was also utilized for the global optimization of the Kriging model of the ducted coaxial-rotors aircraft for the determination of optimized global coordinates. Finally, the optimized results were simulated by Fluent. The results show that the Kriging model and the improved PSO algorithm significantly improve the lift performance of ducted coaxial-rotors aircraft and computer operational efficiency.