该文研究了具有一般权函数w(x)的积分integral from 0 to b w(x)f(x)dx,得出了普遍意义下的Gauss-Kronrod规则,给出并证明了相应代数精确度的两个结果。这些结果主要依赖于下列命题: (1)对一般权函数w(x),q,(z)=integral from 0 to b w(...该文研究了具有一般权函数w(x)的积分integral from 0 to b w(x)f(x)dx,得出了普遍意义下的Gauss-Kronrod规则,给出并证明了相应代数精确度的两个结果。这些结果主要依赖于下列命题: (1)对一般权函数w(x),q,(z)=integral from 0 to b w(t)p_n(t)/(z-t)dt满足三项递推关系; (2)设E_n(z)为〔q,(z)〕^(-1)的主部,则q_n(z)E_n(z)∈span{1,q_(n+1)(Z),…,q_(2n+1)(Z)}; (3)integral from 0 to b w(z)p_n(z)z^k dz=0,0≤k≤n; (4)对特殊函数w(x)=1,E_n(z)之零点是〔a,b〕的单零点,且被p_n(x)的零点隔开。展开更多
文摘该文研究了具有一般权函数w(x)的积分integral from 0 to b w(x)f(x)dx,得出了普遍意义下的Gauss-Kronrod规则,给出并证明了相应代数精确度的两个结果。这些结果主要依赖于下列命题: (1)对一般权函数w(x),q,(z)=integral from 0 to b w(t)p_n(t)/(z-t)dt满足三项递推关系; (2)设E_n(z)为〔q,(z)〕^(-1)的主部,则q_n(z)E_n(z)∈span{1,q_(n+1)(Z),…,q_(2n+1)(Z)}; (3)integral from 0 to b w(z)p_n(z)z^k dz=0,0≤k≤n; (4)对特殊函数w(x)=1,E_n(z)之零点是〔a,b〕的单零点,且被p_n(x)的零点隔开。