Let D be an integral domain with quotient field K,D be the integral closure of D in K,and D^[w] be the ω-integral closure of D in K;so D ■ D^[w],and equality holds when D is Noetherian or dim(D)=1.The Mori-Nagata th...Let D be an integral domain with quotient field K,D be the integral closure of D in K,and D^[w] be the ω-integral closure of D in K;so D ■ D^[w],and equality holds when D is Noetherian or dim(D)=1.The Mori-Nagata theorem states that if D is Noetherian,then D is a Krull domain;it has also been investigated when D is a Dedekind domain.We study integral domains D such that D^[w] is a Krull domain.We also provide an example of an integral domain D such that D ■ D ■ D^[w],t-dim(D)=1,D is a Priifer multiplication domain with v-dim(D)=2,and D^[w] is a UFD.展开更多
基金supported by the Academic Research Fund of Hoseo University in 2017(no.2017-0047).
文摘Let D be an integral domain with quotient field K,D be the integral closure of D in K,and D^[w] be the ω-integral closure of D in K;so D ■ D^[w],and equality holds when D is Noetherian or dim(D)=1.The Mori-Nagata theorem states that if D is Noetherian,then D is a Krull domain;it has also been investigated when D is a Dedekind domain.We study integral domains D such that D^[w] is a Krull domain.We also provide an example of an integral domain D such that D ■ D ■ D^[w],t-dim(D)=1,D is a Priifer multiplication domain with v-dim(D)=2,and D^[w] is a UFD.