网络信息安全中的数据具有维数高、规模复杂等特性。网络入侵检测需要对网络入侵信息进行合理的分析,筛选出危险的带有攻击性的行为。随着数据维数的不断升高,传统的基于距离的聚类分析方法不再适用。针对此,本文提出一种基于Krylov子...网络信息安全中的数据具有维数高、规模复杂等特性。网络入侵检测需要对网络入侵信息进行合理的分析,筛选出危险的带有攻击性的行为。随着数据维数的不断升高,传统的基于距离的聚类分析方法不再适用。针对此,本文提出一种基于Krylov子空间方法的高维数据聚类分析算法,首先将高维数据投影到低维空间,实现数据的降维,再用基于遗传算法的K-means算法在低维空间中进行数据的聚类,避免了数据属性的丢失,同时也提高了高维数据聚类分析的效率。最后,使用KDD Cup 99数据进行实验,实验验证了方法的有效性和精确性。展开更多
文摘网络信息安全中的数据具有维数高、规模复杂等特性。网络入侵检测需要对网络入侵信息进行合理的分析,筛选出危险的带有攻击性的行为。随着数据维数的不断升高,传统的基于距离的聚类分析方法不再适用。针对此,本文提出一种基于Krylov子空间方法的高维数据聚类分析算法,首先将高维数据投影到低维空间,实现数据的降维,再用基于遗传算法的K-means算法在低维空间中进行数据的聚类,避免了数据属性的丢失,同时也提高了高维数据聚类分析的效率。最后,使用KDD Cup 99数据进行实验,实验验证了方法的有效性和精确性。
基金supported by the National Natural Science Foundation of China(6117030961202098+2 种基金91130024)the Key Project of Development Foundation of Science and Technology of CAEP(2011A0202012: 2012A0202008)the Foundation of National Key Laboratory of Computational Physics