In classical nonlinear programming, it is a general method of developing optimality conditions that a nonlinear programming problem is linearized as a linear programming problem by using first order approximations of ...In classical nonlinear programming, it is a general method of developing optimality conditions that a nonlinear programming problem is linearized as a linear programming problem by using first order approximations of the functions at a given feasible point. The linearized procedure for differentiable nonlinear programming problems can be naturally generalized to the quasi differential case. As in classical case so called constraint qualifications have to be imposed on the constraint functions to guarantee that for a given local minimizer of the original problem the nullvector is an optimal solution of the corresponding 'quasilinearized' problem. In this paper, constraint qualifications for inequality constrained quasi differentiable programming problems of type min {f(x)|g(x)≤0} are considered, where f and g are qusidifferentiable functions in the sense of Demyanov. Various constraint qualifications for this problem are presented and a new one is proposed. The relations among these conditions are investigated. Moreover, a Wolf dual problem for this problem is introduced, and the corresponding dual theorems are given.展开更多
This article proposes a few tangent cones,which are relative to the constraint qualifications of optimization problems.With the upper and lower directional derivatives of an objective function,the characteristics of c...This article proposes a few tangent cones,which are relative to the constraint qualifications of optimization problems.With the upper and lower directional derivatives of an objective function,the characteristics of cones on the constraint qualifications are presented.The interrelations among the constraint qualifications,a few cones involved, and level sets of upper and lower directional derivatives are derived.展开更多
Some remarks are made on the use of the Abadie constraint qualification, the Guignard constraint qualifications and the Guignard regularity condition in obtaining weak and strong Kuhn-Tucker type optimality conditions...Some remarks are made on the use of the Abadie constraint qualification, the Guignard constraint qualifications and the Guignard regularity condition in obtaining weak and strong Kuhn-Tucker type optimality conditions in differentiable vector optimization problems.展开更多
Investigation of optimality conditions has been one of the most interesting topics in the theory of multiobjective optimisation problems (MOP). To derive necessary optimality conditions of MOP, we consider assumptions...Investigation of optimality conditions has been one of the most interesting topics in the theory of multiobjective optimisation problems (MOP). To derive necessary optimality conditions of MOP, we consider assumptions called constraints qualifications. It is recognised that Guignard Constraint Qualification (GCQ) is the most efficient and general assumption for scalar objective optimisation problems;however, GCQ does not ensure Karush-Kuhn Tucker (KKT) necessary conditions for multiobjective optimisation problems. In this paper, we investigate the reasons behind that GCQ are not allowed to derive KKT conditions in multiobjective optimisation problems. Furthermore, we propose additional assumptions that allow one to use GCQ to derive necessary conditions for multiobjective optimisation problems. Finally, we also include sufficient conditions for multiobjective optimisation problems.展开更多
A nonlinear optimization problem (P) with inequality constraints can be converted into a new optimization problem (PE) with equality constraints only. This is a Valentine method for finite dimensional optimization. We...A nonlinear optimization problem (P) with inequality constraints can be converted into a new optimization problem (PE) with equality constraints only. This is a Valentine method for finite dimensional optimization. We review second order optimality conditions for (PE) in connection with those of (P). A strictly complementary slackness condition can be made to get the property that sufficient optimality conditions for (P) imply the same property for (PE). We give some new results (see Theorems 3.1, 3.2 and 3.3) .Without any assumption, a counterexample is given to show that these conditions are not equivalent.展开更多
The BCQ and the Abadie CQ for infinite systems of convex inequalities in Banach spaces are characterized in terms of the upper semi-continuity of the convex cones generated by the subdifferentials of active convex fun...The BCQ and the Abadie CQ for infinite systems of convex inequalities in Banach spaces are characterized in terms of the upper semi-continuity of the convex cones generated by the subdifferentials of active convex functions. Some relationships with other constraint qualifications such as the CPLV and the Slate condition are also studied. Applications in best approximation theory are provided.展开更多
This paper derives a new constraint qualification for nondifferential convex programming problem, by using the distance between the feasible set and the perturbed feasible sets. If the feasible sot is bounded, then th...This paper derives a new constraint qualification for nondifferential convex programming problem, by using the distance between the feasible set and the perturbed feasible sets. If the feasible sot is bounded, then this constraint qualification is weaker than Stater's constrains qualification.展开更多
文摘In classical nonlinear programming, it is a general method of developing optimality conditions that a nonlinear programming problem is linearized as a linear programming problem by using first order approximations of the functions at a given feasible point. The linearized procedure for differentiable nonlinear programming problems can be naturally generalized to the quasi differential case. As in classical case so called constraint qualifications have to be imposed on the constraint functions to guarantee that for a given local minimizer of the original problem the nullvector is an optimal solution of the corresponding 'quasilinearized' problem. In this paper, constraint qualifications for inequality constrained quasi differentiable programming problems of type min {f(x)|g(x)≤0} are considered, where f and g are qusidifferentiable functions in the sense of Demyanov. Various constraint qualifications for this problem are presented and a new one is proposed. The relations among these conditions are investigated. Moreover, a Wolf dual problem for this problem is introduced, and the corresponding dual theorems are given.
基金the Natural Science Foundation ofFujian Province of China(S0650021,2006J0215)the National Natural Science Foundation of China(10771086)
文摘This article proposes a few tangent cones,which are relative to the constraint qualifications of optimization problems.With the upper and lower directional derivatives of an objective function,the characteristics of cones on the constraint qualifications are presented.The interrelations among the constraint qualifications,a few cones involved, and level sets of upper and lower directional derivatives are derived.
文摘Some remarks are made on the use of the Abadie constraint qualification, the Guignard constraint qualifications and the Guignard regularity condition in obtaining weak and strong Kuhn-Tucker type optimality conditions in differentiable vector optimization problems.
文摘Investigation of optimality conditions has been one of the most interesting topics in the theory of multiobjective optimisation problems (MOP). To derive necessary optimality conditions of MOP, we consider assumptions called constraints qualifications. It is recognised that Guignard Constraint Qualification (GCQ) is the most efficient and general assumption for scalar objective optimisation problems;however, GCQ does not ensure Karush-Kuhn Tucker (KKT) necessary conditions for multiobjective optimisation problems. In this paper, we investigate the reasons behind that GCQ are not allowed to derive KKT conditions in multiobjective optimisation problems. Furthermore, we propose additional assumptions that allow one to use GCQ to derive necessary conditions for multiobjective optimisation problems. Finally, we also include sufficient conditions for multiobjective optimisation problems.
文摘A nonlinear optimization problem (P) with inequality constraints can be converted into a new optimization problem (PE) with equality constraints only. This is a Valentine method for finite dimensional optimization. We review second order optimality conditions for (PE) in connection with those of (P). A strictly complementary slackness condition can be made to get the property that sufficient optimality conditions for (P) imply the same property for (PE). We give some new results (see Theorems 3.1, 3.2 and 3.3) .Without any assumption, a counterexample is given to show that these conditions are not equivalent.
基金the National Natural Science Foundation of China(Grant No 10271025)Program for New Century Excellent Talents in University
文摘The BCQ and the Abadie CQ for infinite systems of convex inequalities in Banach spaces are characterized in terms of the upper semi-continuity of the convex cones generated by the subdifferentials of active convex functions. Some relationships with other constraint qualifications such as the CPLV and the Slate condition are also studied. Applications in best approximation theory are provided.
基金the National Natural Science Foundation of China (No.19671053).
文摘This paper derives a new constraint qualification for nondifferential convex programming problem, by using the distance between the feasible set and the perturbed feasible sets. If the feasible sot is bounded, then this constraint qualification is weaker than Stater's constrains qualification.