Evaluating complex information systems necessitates deep contextual knowledge of technology, user needs, and quality. The quality evaluation challenges increase with the system’s complexity, especially when multiple ...Evaluating complex information systems necessitates deep contextual knowledge of technology, user needs, and quality. The quality evaluation challenges increase with the system’s complexity, especially when multiple services supported by varied technological modules, are offered. Existing standards for software quality, such as the ISO25000 series, provide a broad framework for evaluation. Broadness offers initial implementation ease albeit, it often lacks specificity to cater to individual system modules. This paper maps 48 data metrics and 175 software metrics on specific system modules while aligning them with ISO standard quality traits. Using the ISO25000 series as a foundation, especially ISO25010 and 25012, this research seeks to augment the applicability of these standards to multi-faceted systems, exemplified by five distinct software modules prevalent in modern information ecosystems.展开更多
基于差分隐私的深度学习隐私保护方法中,训练周期的长度以及隐私预算的分配方式直接制约着深度学习模型的效用.针对现有深度学习结合差分隐私的方法中模型训练周期有限、隐私预算分配不合理导致模型安全性与可用性差的问题,提出一种基...基于差分隐私的深度学习隐私保护方法中,训练周期的长度以及隐私预算的分配方式直接制约着深度学习模型的效用.针对现有深度学习结合差分隐私的方法中模型训练周期有限、隐私预算分配不合理导致模型安全性与可用性差的问题,提出一种基于数据特征相关性和自适应差分隐私的深度学习方法(deep learning methods based on data feature Relevance and Adaptive Differential Privacy,RADP).首先,该方法利用逐层相关性传播算法在预训练模型上计算出原始数据集上每个特征的平均相关性;然后,使用基于信息熵的方法计算每个特征平均相关性的隐私度量,根据隐私度量对特征平均相关性自适应地添加拉普拉斯噪声;在此基础上,根据加噪保护后的每个特征平均相关性,合理分配隐私预算,自适应地对特征添加拉普拉斯噪声;最后,理论分析该方法(RADP)满足ε-差分隐私,并且兼顾安全性与可用性.同时,在三个真实数据集(MNIST,Fashion-MNIST,CIFAR-10)上的实验结果表明,RADP方法的准确率以及平均损失均优于AdLM(Adaptive Laplace Mechanism)方法、DPSGD(Differential Privacy with Stochastic Gradient Descent)方法和DPDLIGDO(Differentially Private Deep Learning with Iterative Gradient Descent Optimization)方法,并且RADP方法的稳定性仍能保持良好.展开更多
In this paper, the authors extend [1] and provide more details of how the brain may act like a quantum computer. In particular, positing the difference between voltages on two axons as the environment for ions undergo...In this paper, the authors extend [1] and provide more details of how the brain may act like a quantum computer. In particular, positing the difference between voltages on two axons as the environment for ions undergoing spatial superposition, we argue that evolution in the presence of metric perturbations will differ from that in the absence of these waves. This differential state evolution will then encode the information being processed by the tract due to the interaction of the quantum state of the ions at the nodes with the “controlling’ potential. Upon decoherence, which is equal to a measurement, the final spatial state of the ions is decided and it also gets reset by the next impulse initiation time. Under synchronization, several tracts undergo such processes in synchrony and therefore the picture of a quantum computing circuit is complete. Under this model, based on the number of axons in the corpus callosum alone, we estimate that upwards of 50 million quantum states might be prepared and evolved every second in this white matter tract, far greater processing than any present quantum computer can accomplish.展开更多
The security of most code-based cryptosystems relies on the hardness of the syndrome decoding(SD) problem.The best solvers of the SD problem are known as information set,decoding(ISD) algorithms.Recently,Weger,et al.(...The security of most code-based cryptosystems relies on the hardness of the syndrome decoding(SD) problem.The best solvers of the SD problem are known as information set,decoding(ISD) algorithms.Recently,Weger,et al.(2020) described Stern’s ISD algorithm,s-blocks algorithm and partial Gaussian elimination algorithms in the Lee metric over an integer residue ring Z_(pm),where p is a prime number and m is a positive integer,and analyzed the time complexity.In this paper,the authors apply a binary ISD algorithm in the Hamming metric proposed by May,et al.(2011)to solve the SD problem over the Galois ring GR(p^(m),k) endowed with the Lee metric and provide a detailed complexity analysis.Compared with Stern’s algorithm over Zpmin the Lee metric,the proposed algorithm has a significant improvement in the time complexity.展开更多
Person re-identification (re-id) on robot platform is an important application for human-robot- interaction (HRI), which aims at making the robot recognize the around persons in varying scenes. Although many effec...Person re-identification (re-id) on robot platform is an important application for human-robot- interaction (HRI), which aims at making the robot recognize the around persons in varying scenes. Although many effective methods have been proposed for surveillance re-id in recent years, re-id on robot platform is still a novel unsolved problem. Most existing methods adapt the supervised metric learning offline to improve the accuracy. However, these methods can not adapt to unknown scenes. To solve this problem, an online re-id framework is proposed. Considering that robotics can afford to use high-resolution RGB-D sensors and clear human face may be captured, face information is used to update the metric model. Firstly, the metric model is pre-trained offline using labeled data. Then during the online stage, we use face information to mine incorrect body matching pairs which are collected to update the metric model online. In addition, to make full use of both appearance and skeleton information provided by RGB-D sensors, a novel feature funnel model (FFM) is proposed. Comparison studies show our approach is more effective and adaptable to varying environments.展开更多
Metric of quantum states plays an important role in quantum information theory. In this letter, we find the deep connection between quantum logic theory and quantum information theory. Using the method of quantum logi...Metric of quantum states plays an important role in quantum information theory. In this letter, we find the deep connection between quantum logic theory and quantum information theory. Using the method of quantum logic, we can get a famous inequality in quantum information theory, and we answer a question raised by S. Gudder.展开更多
Nested in the environment of the nucleus of the cell, the 23 sets of chromosomes that comprise the human genome function as one integrated whole system, orchestrating the expression of thousands of genes underlying th...Nested in the environment of the nucleus of the cell, the 23 sets of chromosomes that comprise the human genome function as one integrated whole system, orchestrating the expression of thousands of genes underlying the biological characteristics of the cell, individual and the species. The extraction of meaningful information from this complex data set depends crucially upon the lens through which the data are examined. We present a biophysical perspective on genomic information encoded in single nucleotide polymorphisms (SNPs), and introduce metrics for modeling information encoded in the genome. Information, like energy, is considered to be a conserved physical property of the universe. The information structured in SNPs describes the adaptation of a human population to a given environment. The maintained order measured by the information content is associated with entropies, energies, and other state variables for a dynamic system in homeostasis. “Genodynamics” characterizes the state variables for genomic populations that are stable under stochastic environmental stresses. The determination of allelic energies allows the parameterization of specific environmental influences upon individual alleles across populations. The environment drives population-based genome variation. From this vantage point, the genome is modeled as a complex, dynamic information system defined by patterns of SNP alleles and SNP haplotypes.展开更多
The management of forest corridors and related ecology is one of the effective strategies to minimize the adverse effects of forest degradation. It controls the connectivity of inhabitant species and the connection of...The management of forest corridors and related ecology is one of the effective strategies to minimize the adverse effects of forest degradation. It controls the connectivity of inhabitant species and the connection of the isolated patches. This study analyzed spatial and temporal forest physical degradation based on forest cover change and forest fragmentation in the Gishwati-Mukura biological corridor from 1990-2019. Remotely sensed datasets, Geographical Information System (GIS) and FRAGSTATS software were used to analyze the spatial and temporal physical degradation and changes in forest cover. The results indicated that the Gishwati-Mukura corridor experienced massive deforestation where approximately 7617.1 ha (64.22%) of forest cover was completely cleared out, which implies an annual forest loss of 262.6 ha·year<sup>-</sup><sup>1</sup> (2.21%) during 1990-2019. The forest cover transitions patterns and geostatistical analysis indicated that extensive deforestation was associated with intensive agriculture. The results demonstrated that agriculture has dramatically increased from 29.46% in 1990 to 57.22% in 2019, with an annual increase of 1.97%. Since Gishwati-Mukura has changed to National Park (NP), it lacks diversified scientific studies addressing the analysis of the remote and spatial patterns to investigate its physical degradation and landscape dynamics. This research study will serve as remote forest analysis gap-filling and as the cornerstone of numerous other research that will contribute to the improvement of the connectivity assessments along the Gishwati-Mukura corridor and other related ecosystems.展开更多
文摘Evaluating complex information systems necessitates deep contextual knowledge of technology, user needs, and quality. The quality evaluation challenges increase with the system’s complexity, especially when multiple services supported by varied technological modules, are offered. Existing standards for software quality, such as the ISO25000 series, provide a broad framework for evaluation. Broadness offers initial implementation ease albeit, it often lacks specificity to cater to individual system modules. This paper maps 48 data metrics and 175 software metrics on specific system modules while aligning them with ISO standard quality traits. Using the ISO25000 series as a foundation, especially ISO25010 and 25012, this research seeks to augment the applicability of these standards to multi-faceted systems, exemplified by five distinct software modules prevalent in modern information ecosystems.
文摘基于差分隐私的深度学习隐私保护方法中,训练周期的长度以及隐私预算的分配方式直接制约着深度学习模型的效用.针对现有深度学习结合差分隐私的方法中模型训练周期有限、隐私预算分配不合理导致模型安全性与可用性差的问题,提出一种基于数据特征相关性和自适应差分隐私的深度学习方法(deep learning methods based on data feature Relevance and Adaptive Differential Privacy,RADP).首先,该方法利用逐层相关性传播算法在预训练模型上计算出原始数据集上每个特征的平均相关性;然后,使用基于信息熵的方法计算每个特征平均相关性的隐私度量,根据隐私度量对特征平均相关性自适应地添加拉普拉斯噪声;在此基础上,根据加噪保护后的每个特征平均相关性,合理分配隐私预算,自适应地对特征添加拉普拉斯噪声;最后,理论分析该方法(RADP)满足ε-差分隐私,并且兼顾安全性与可用性.同时,在三个真实数据集(MNIST,Fashion-MNIST,CIFAR-10)上的实验结果表明,RADP方法的准确率以及平均损失均优于AdLM(Adaptive Laplace Mechanism)方法、DPSGD(Differential Privacy with Stochastic Gradient Descent)方法和DPDLIGDO(Differentially Private Deep Learning with Iterative Gradient Descent Optimization)方法,并且RADP方法的稳定性仍能保持良好.
文摘In this paper, the authors extend [1] and provide more details of how the brain may act like a quantum computer. In particular, positing the difference between voltages on two axons as the environment for ions undergoing spatial superposition, we argue that evolution in the presence of metric perturbations will differ from that in the absence of these waves. This differential state evolution will then encode the information being processed by the tract due to the interaction of the quantum state of the ions at the nodes with the “controlling’ potential. Upon decoherence, which is equal to a measurement, the final spatial state of the ions is decided and it also gets reset by the next impulse initiation time. Under synchronization, several tracts undergo such processes in synchrony and therefore the picture of a quantum computing circuit is complete. Under this model, based on the number of axons in the corpus callosum alone, we estimate that upwards of 50 million quantum states might be prepared and evolved every second in this white matter tract, far greater processing than any present quantum computer can accomplish.
基金supported by the National Natural Science Foundation of China under Grant No. 61872355the National Key Research and Development Program of China under Grant No. 2018YFA0704703
文摘The security of most code-based cryptosystems relies on the hardness of the syndrome decoding(SD) problem.The best solvers of the SD problem are known as information set,decoding(ISD) algorithms.Recently,Weger,et al.(2020) described Stern’s ISD algorithm,s-blocks algorithm and partial Gaussian elimination algorithms in the Lee metric over an integer residue ring Z_(pm),where p is a prime number and m is a positive integer,and analyzed the time complexity.In this paper,the authors apply a binary ISD algorithm in the Hamming metric proposed by May,et al.(2011)to solve the SD problem over the Galois ring GR(p^(m),k) endowed with the Lee metric and provide a detailed complexity analysis.Compared with Stern’s algorithm over Zpmin the Lee metric,the proposed algorithm has a significant improvement in the time complexity.
基金This work is supported by the National Natural Science Foundation of China (NSFC, nos. 61340046), the National High Technology Research and Development Programme of China (863 Programme, no. 2006AA04Z247), the Scientific and Technical Innovation Commission of Shenzhen Municipality (nos. JCYJ20130331144631730), and the Specialized Research Fund for the Doctoral Programme of Higher Education (SRFDP, no. 20130001110011).
文摘Person re-identification (re-id) on robot platform is an important application for human-robot- interaction (HRI), which aims at making the robot recognize the around persons in varying scenes. Although many effective methods have been proposed for surveillance re-id in recent years, re-id on robot platform is still a novel unsolved problem. Most existing methods adapt the supervised metric learning offline to improve the accuracy. However, these methods can not adapt to unknown scenes. To solve this problem, an online re-id framework is proposed. Considering that robotics can afford to use high-resolution RGB-D sensors and clear human face may be captured, face information is used to update the metric model. Firstly, the metric model is pre-trained offline using labeled data. Then during the online stage, we use face information to mine incorrect body matching pairs which are collected to update the metric model online. In addition, to make full use of both appearance and skeleton information provided by RGB-D sensors, a novel feature funnel model (FFM) is proposed. Comparison studies show our approach is more effective and adaptable to varying environments.
基金supported by the New Teachers Foundation of Ministry of Education of China under Grant No.20070248087
文摘Metric of quantum states plays an important role in quantum information theory. In this letter, we find the deep connection between quantum logic theory and quantum information theory. Using the method of quantum logic, we can get a famous inequality in quantum information theory, and we answer a question raised by S. Gudder.
文摘Nested in the environment of the nucleus of the cell, the 23 sets of chromosomes that comprise the human genome function as one integrated whole system, orchestrating the expression of thousands of genes underlying the biological characteristics of the cell, individual and the species. The extraction of meaningful information from this complex data set depends crucially upon the lens through which the data are examined. We present a biophysical perspective on genomic information encoded in single nucleotide polymorphisms (SNPs), and introduce metrics for modeling information encoded in the genome. Information, like energy, is considered to be a conserved physical property of the universe. The information structured in SNPs describes the adaptation of a human population to a given environment. The maintained order measured by the information content is associated with entropies, energies, and other state variables for a dynamic system in homeostasis. “Genodynamics” characterizes the state variables for genomic populations that are stable under stochastic environmental stresses. The determination of allelic energies allows the parameterization of specific environmental influences upon individual alleles across populations. The environment drives population-based genome variation. From this vantage point, the genome is modeled as a complex, dynamic information system defined by patterns of SNP alleles and SNP haplotypes.
文摘The management of forest corridors and related ecology is one of the effective strategies to minimize the adverse effects of forest degradation. It controls the connectivity of inhabitant species and the connection of the isolated patches. This study analyzed spatial and temporal forest physical degradation based on forest cover change and forest fragmentation in the Gishwati-Mukura biological corridor from 1990-2019. Remotely sensed datasets, Geographical Information System (GIS) and FRAGSTATS software were used to analyze the spatial and temporal physical degradation and changes in forest cover. The results indicated that the Gishwati-Mukura corridor experienced massive deforestation where approximately 7617.1 ha (64.22%) of forest cover was completely cleared out, which implies an annual forest loss of 262.6 ha·year<sup>-</sup><sup>1</sup> (2.21%) during 1990-2019. The forest cover transitions patterns and geostatistical analysis indicated that extensive deforestation was associated with intensive agriculture. The results demonstrated that agriculture has dramatically increased from 29.46% in 1990 to 57.22% in 2019, with an annual increase of 1.97%. Since Gishwati-Mukura has changed to National Park (NP), it lacks diversified scientific studies addressing the analysis of the remote and spatial patterns to investigate its physical degradation and landscape dynamics. This research study will serve as remote forest analysis gap-filling and as the cornerstone of numerous other research that will contribute to the improvement of the connectivity assessments along the Gishwati-Mukura corridor and other related ecosystems.