In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, ...In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.展开更多
In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzent...In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.展开更多
In this paper, an improved element-free Galerkin (IEFG) method is proposed to solve the generalized fifth-order Korteweg-de Vries (gfKdV) equation. When the traditional element-free Galerkin (EFG) method is used...In this paper, an improved element-free Galerkin (IEFG) method is proposed to solve the generalized fifth-order Korteweg-de Vries (gfKdV) equation. When the traditional element-free Galerkin (EFG) method is used to solve such an equation, unstable or even wrong numerical solutions may be obtained due to the violation of the consistency conditions of the moving least-squares (MLS) shape functions. To solve this problem, the EFG method is improved by employing the improved moving least-squares (IMLS) approximation based on the shifted polynomial basis functions. The effectiveness of the IEFG method for the gfKdV equation is investigated by using some numerical examples. Meanwhile, the motion of single solitary wave and the interaction of two solitons are simulated using the IEFG method.展开更多
In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the B...In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.展开更多
In this paper, a new auxiliary equation method is proposed. Combined with the mapping method, abundant periodic wave solutions for generalized Klein-Gordon equation and Benjamin equation are obtained. They are new typ...In this paper, a new auxiliary equation method is proposed. Combined with the mapping method, abundant periodic wave solutions for generalized Klein-Gordon equation and Benjamin equation are obtained. They are new types of periodic wave solutions which are rarely found in previous studies. As <em>m</em> → 0 and <em>m</em> → 1, some new types of trigonometric solutions and solitary solutions are also obtained correspondingly. This method is promising for constructing abundant periodic wave solutions and solitary solutions of nonlinear evolution equations (NLEEs) in mathematical physics.展开更多
In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. The...In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. These solutions include Weierstrass function solution, solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time. Because of the three or four arbitrary functions, rich localized excitations can be found.展开更多
In this study,the generalized modified variable-coefficient KdV equation with external-force term(gvcmKdV)describing atmospheric blocking located in the mid-high latitudes over ocean is studied for integrability prope...In this study,the generalized modified variable-coefficient KdV equation with external-force term(gvcmKdV)describing atmospheric blocking located in the mid-high latitudes over ocean is studied for integrability property by using consistent Riccati expansion solvability and the necessary integrability conditions between the function coefficients are obtained.Moreover,several new solutions have been constructed for the gvcmKdV.Additionally,the classical direct similarity reduction method is used to re-duce the gvcmKdV to a nonlinear ordinary differential equation.Building on the solutions given in the previous literature for the reduced equation,many novel solitary and periodic wave solutions have been obtained for the gvcmKdV.展开更多
In this paper,we utilize the exp(−ϕ(ξ))-expansion method to find exact and solitary wave solutions of the generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation.The generalized Zakharov-Kuzn...In this paper,we utilize the exp(−ϕ(ξ))-expansion method to find exact and solitary wave solutions of the generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation.The generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation describes the model for the propagation of long waves that mingle with nonlinear and dissipative impact.This model is used in the analysis of the surface waves of long wavelength in hydro magnetic waves in cold plasma,liquids,acoustic waves in harmonic crystals and acoustic-gravity waves in compressible fluids.By using this method,seven different kinds of traveling wave solutions are successfully obtained for this model.The considered method and transformation techniques are efficient and consistent for solving nonlinear evolution equations and obtain exact solutions that are applied to the science and engineering fields.展开更多
In this research article,the(3+1)-dimensional nonlinear Gardner-Kadomtsov-Petviashvili(Gardner-KP)equation which depicts the nonlinear modulation of periodic waves,is analyzed through the Lie group-theoretic technique...In this research article,the(3+1)-dimensional nonlinear Gardner-Kadomtsov-Petviashvili(Gardner-KP)equation which depicts the nonlinear modulation of periodic waves,is analyzed through the Lie group-theoretic technique.Considering the Lie invariance condition,we find the symmetry generators.The pro-posed model yields eight-dimensional Lie algebra.Moreover,an optimal system of sub-algebras is com-puted,and similarity reductions are made.The considered nonlinear partial differential equation is re-duced into ordinary differential equations(ODEs)by utilizing the similarity transformation method(STM),which has the benefit of yielding a large number of accurate traveling wave solutions.These ODEs are further solved to get closed-form solutions of the Gardner-KP equation in some cases,while in other cases,we use the new auxiliary equation method to get its soliton solutions.The evolution profiles of the obtained solutions are examined graphically under the appropriate selection of arbitrary parameters.展开更多
We have utilized three novel methods,called generalized direct algebraic,modified F-expansion and improved simple equation methods to construct traveling wave solutions of the system of shallow water wave equations an...We have utilized three novel methods,called generalized direct algebraic,modified F-expansion and improved simple equation methods to construct traveling wave solutions of the system of shallow water wave equations and modified Benjamin-Bona-Mahony equation.After substituting particular values of the parameters,different solitary wave solutions are derived from the exact traveling wave solutions.It is shown that these employed methods are more powerful tools for nonlinear wave equations.展开更多
In this paper, the higher order NLS equation with cubic-quintic nonlinear terms is studied, new abundant solitary solutions with traveling-wave envelope of this equation are obtained with the aid of a generalized auxi...In this paper, the higher order NLS equation with cubic-quintic nonlinear terms is studied, new abundant solitary solutions with traveling-wave envelope of this equation are obtained with the aid of a generalized auxiliary equation method and complex envelope non-traveling transform approach.展开更多
In the present study,the solitary wave solutions of modified Degasperis-Procesi equation are developed.Unlike the standard Degasperis-Procesi equation,where multi-peakon solutions arise,the modification caused a chang...In the present study,the solitary wave solutions of modified Degasperis-Procesi equation are developed.Unlike the standard Degasperis-Procesi equation,where multi-peakon solutions arise,the modification caused a change in the characteristic of these peakon solutions and changed it to bell-shaped solitons.By using the extended auxiliary equation method,we deduced some new soliton solutions of the fourthorder nonlinear modified Degasperis-Procesi equation with constant coefficient.These solutions include symmetrical,non-symmetrical kink solutions,solitary pattern solutions,weiestrass elliptic function solutions and triangular function solutions.We discuss the stability analysis for these solutions.展开更多
The generalized sub-ODE method, the rational (G'/G)-expansion method, the exp-function method and the sine-cosine method are applied for constructing many traveling wave solutions of nonlinear partial differential ...The generalized sub-ODE method, the rational (G'/G)-expansion method, the exp-function method and the sine-cosine method are applied for constructing many traveling wave solutions of nonlinear partial differential equations (PDEs). Some illustrative equations are investigated by these methods and many hyperbolic, trigonometric and rational function solutions are found. We apply these methods to obtain the exact solutions for the generalized KdV-mKdV (GKdV-mKdV) equation with higherorder nonlinear terms. The obtained results confirm that the proposed methods are efficient techniques for analytic treatment of a wide variety of nonlinear partial differential equations in mathematical physics. We compare between the results yielding from these methods. Also, a comparison between our new results in this paper and the well-known results are given.展开更多
文摘In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University (Grant No QN005023).
文摘In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.
基金the National Basic Research Program of China(Grant No.2012CB025903)
文摘In this paper, an improved element-free Galerkin (IEFG) method is proposed to solve the generalized fifth-order Korteweg-de Vries (gfKdV) equation. When the traditional element-free Galerkin (EFG) method is used to solve such an equation, unstable or even wrong numerical solutions may be obtained due to the violation of the consistency conditions of the moving least-squares (MLS) shape functions. To solve this problem, the EFG method is improved by employing the improved moving least-squares (IMLS) approximation based on the shifted polynomial basis functions. The effectiveness of the IEFG method for the gfKdV equation is investigated by using some numerical examples. Meanwhile, the motion of single solitary wave and the interaction of two solitons are simulated using the IEFG method.
文摘In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.
文摘In this paper, a new auxiliary equation method is proposed. Combined with the mapping method, abundant periodic wave solutions for generalized Klein-Gordon equation and Benjamin equation are obtained. They are new types of periodic wave solutions which are rarely found in previous studies. As <em>m</em> → 0 and <em>m</em> → 1, some new types of trigonometric solutions and solitary solutions are also obtained correspondingly. This method is promising for constructing abundant periodic wave solutions and solitary solutions of nonlinear evolution equations (NLEEs) in mathematical physics.
基金The project supported by National Natural Science Foundation of China undcr Grant No. 10172056 .
文摘In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. These solutions include Weierstrass function solution, solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time. Because of the three or four arbitrary functions, rich localized excitations can be found.
基金The author would like to thank the Deanship of Scientific Re-search,Majmaah University,Saudi Arabia,for funding this work under project No.R-2021-222.
文摘In this study,the generalized modified variable-coefficient KdV equation with external-force term(gvcmKdV)describing atmospheric blocking located in the mid-high latitudes over ocean is studied for integrability property by using consistent Riccati expansion solvability and the necessary integrability conditions between the function coefficients are obtained.Moreover,several new solutions have been constructed for the gvcmKdV.Additionally,the classical direct similarity reduction method is used to re-duce the gvcmKdV to a nonlinear ordinary differential equation.Building on the solutions given in the previous literature for the reduced equation,many novel solitary and periodic wave solutions have been obtained for the gvcmKdV.
文摘In this paper,we utilize the exp(−ϕ(ξ))-expansion method to find exact and solitary wave solutions of the generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation.The generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation describes the model for the propagation of long waves that mingle with nonlinear and dissipative impact.This model is used in the analysis of the surface waves of long wavelength in hydro magnetic waves in cold plasma,liquids,acoustic waves in harmonic crystals and acoustic-gravity waves in compressible fluids.By using this method,seven different kinds of traveling wave solutions are successfully obtained for this model.The considered method and transformation techniques are efficient and consistent for solving nonlinear evolution equations and obtain exact solutions that are applied to the science and engineering fields.
基金The authors would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project R-2022-178.
文摘In this research article,the(3+1)-dimensional nonlinear Gardner-Kadomtsov-Petviashvili(Gardner-KP)equation which depicts the nonlinear modulation of periodic waves,is analyzed through the Lie group-theoretic technique.Considering the Lie invariance condition,we find the symmetry generators.The pro-posed model yields eight-dimensional Lie algebra.Moreover,an optimal system of sub-algebras is com-puted,and similarity reductions are made.The considered nonlinear partial differential equation is re-duced into ordinary differential equations(ODEs)by utilizing the similarity transformation method(STM),which has the benefit of yielding a large number of accurate traveling wave solutions.These ODEs are further solved to get closed-form solutions of the Gardner-KP equation in some cases,while in other cases,we use the new auxiliary equation method to get its soliton solutions.The evolution profiles of the obtained solutions are examined graphically under the appropriate selection of arbitrary parameters.
文摘We have utilized three novel methods,called generalized direct algebraic,modified F-expansion and improved simple equation methods to construct traveling wave solutions of the system of shallow water wave equations and modified Benjamin-Bona-Mahony equation.After substituting particular values of the parameters,different solitary wave solutions are derived from the exact traveling wave solutions.It is shown that these employed methods are more powerful tools for nonlinear wave equations.
基金Supported by the National Natural Science Foundation of China(No.11361048)
文摘In this paper, the higher order NLS equation with cubic-quintic nonlinear terms is studied, new abundant solitary solutions with traveling-wave envelope of this equation are obtained with the aid of a generalized auxiliary equation method and complex envelope non-traveling transform approach.
文摘In the present study,the solitary wave solutions of modified Degasperis-Procesi equation are developed.Unlike the standard Degasperis-Procesi equation,where multi-peakon solutions arise,the modification caused a change in the characteristic of these peakon solutions and changed it to bell-shaped solitons.By using the extended auxiliary equation method,we deduced some new soliton solutions of the fourthorder nonlinear modified Degasperis-Procesi equation with constant coefficient.These solutions include symmetrical,non-symmetrical kink solutions,solitary pattern solutions,weiestrass elliptic function solutions and triangular function solutions.We discuss the stability analysis for these solutions.
文摘The generalized sub-ODE method, the rational (G'/G)-expansion method, the exp-function method and the sine-cosine method are applied for constructing many traveling wave solutions of nonlinear partial differential equations (PDEs). Some illustrative equations are investigated by these methods and many hyperbolic, trigonometric and rational function solutions are found. We apply these methods to obtain the exact solutions for the generalized KdV-mKdV (GKdV-mKdV) equation with higherorder nonlinear terms. The obtained results confirm that the proposed methods are efficient techniques for analytic treatment of a wide variety of nonlinear partial differential equations in mathematical physics. We compare between the results yielding from these methods. Also, a comparison between our new results in this paper and the well-known results are given.