BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify geno...BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify genomic instability(GI).Nevertheless,GI-LncRNAs remain largely unexplored.This study established a GI-derived LncRNA signature(GILncSig)that can predict the prognosis of HCC patients.AIM To establish a GILncSig that can predict the prognosis of HCC patients.METHODS Identification of GI-LncRNAs was conducted by combining LncRNA expression and somatic mutation profiles.The GI-LncRNAs were then analyzed for functional enrichment.The GILncSig was established in the training set by Cox regression analysis,and its predictive ability was verified in the testing set and TCGA set.In addition,we explored the effects of the GILncSig and TP53 on prognosis.RESULTS A total of 88 GI-LncRNAs were found,and functional enrichment analysis showed that their functions were mainly involved in small molecule metabolism and GI.The GILncSig was constructed by 5 LncRNAs(miR210HG,AC016735.1,AC116351.1,AC010643.1,LUCAT1).In the training set,the prognosis of high-risk patients was significantly worse than that of low-risk patients,and similar results were verified in the testing set and TCGA set.Multivariate Cox regression analysis and stratified analysis confirmed that the GILncSig could be used as an independent prognostic factor.Receiver operating characteristic curve analysis of the GILncSig showed that the area under the curve(0.773)was higher than the two LncRNA signatures published recently.Furthermore,the GILncSig may have a better predictive performance than TP53 mutation status alone.CONCLUSION We established a GILncSig that can predict the prognosis of HCC patients,which will help to guide prognostic evaluation and treatment decisions.展开更多
Objective:To investigate the prevalence and risk factors associated with long COVID symptoms among children and adolescents who have recovered from COVID-19.Methods:This study applied a cross-sectional approach within...Objective:To investigate the prevalence and risk factors associated with long COVID symptoms among children and adolescents who have recovered from COVID-19.Methods:This study applied a cross-sectional approach within community settings in a southern province of Vietnam.A structured questionnaire featuring socio-demographic information and common long COVID symptoms was employed.Phi correlation coefficients assessed associations among pairs of long COVID symptoms.Additionally,multivariable logistic regression models were performed to investigate the risk factors of long COVID in recovered COVID-19 children and adolescents.Results:Among 422 participants,39.3%reported long COVID symptoms,with a prevalence of 45.2%(SD=0.5)in children and 22.2%(SD=0.4)in adolescents.Common symptoms reported were cough 34.6%(SD=0.5),fatigue 20.6%(SD=0.4),shortness of breath 10.9%(SD=0.3),and lack of appetite 6.6%(SD=0.3).Concerning risk factors of long COVID,a higher risk was observed among demographic groups,including girls(OR 1.25,95%CI 1.15-1.37;P<0.001,reference:boys),children compared to adolescents(OR 1.24,95%CI 1.12-1.37;P<0.001),overweight individuals(OR 1.14,95%CI 1.02-1.27;P=0.018,reference:healthy weight),and participants without any COVID-19 vaccination(OR 1.36,95%CI 1.20-1.54;P<0.001),or have received only one single dose(OR 1.35,95%CI 1.10-1.64;P=0.004)compared to those who have received two doses.Besides,patients with a COVID-19 treatment duration exceeding two weeks also had a higher risk of long COVID(OR 1.32,95%CI 1.09-1.60;P=0.003)than those who recovered less than seven days.Conclusions:The insights from this study provide crucial guidance for predicting the factors associated with the occurrence of long COVID in pediatric patients,contributing to strategic interventions aimed at mitigating the long COVID risks among children and adolescents in Vietnam.展开更多
Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experiment...Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experimentally demonstrated a 4 mm size,all-silicon metasurface metalens with large depth of focus opera-tional across a broadband range from 9µm to 11.5µm.The experimental results confirm effective focusing and imaging capabilities of the metalens in LWIR region,thus paving the way for practical LWIR applications of met-alens technology.展开更多
Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections an...Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections and geologic disposal of nuclear waste.Such activities are expected to rise in the future making it necessary to assess their short-and long-term safety.Here,a new machine learning(ML)approach to model pore pressure and fault displacements in response to high-pressure fluid injection cycles is developed.The focus is on fault behavior near the injection borehole.To capture the temporal dependencies in the data,long short-term memory(LSTM)networks are utilized.To prevent error accumulation within the forecast window,four critical measures to train a robust LSTM model for predicting fault response are highlighted:(i)setting an appropriate value of LSTM lag,(ii)calibrating the LSTM cell dimension,(iii)learning rate reduction during weight optimization,and(iv)not adopting an independent injection cycle as a validation set.Several numerical experiments were conducted,which demonstrated that the ML model can capture peaks in pressure and associated fault displacement that accompany an increase in fluid injection.The model also captured the decay in pressure and displacement during the injection shut-in period.Further,the ability of an ML model to highlight key changes in fault hydromechanical activation processes was investigated,which shows that ML can be used to monitor risk of fault activation and leakage during high pressure fluid injections.展开更多
The incidence rates of hepatocellular carcinoma(HCC)have increased in recent decades.Despite advancements in therapy and early diagnosis improving shortterm prognosis,long-term outcomes remain poor.Long noncoding RNAs...The incidence rates of hepatocellular carcinoma(HCC)have increased in recent decades.Despite advancements in therapy and early diagnosis improving shortterm prognosis,long-term outcomes remain poor.Long noncoding RNAs(lncRNAs)and lipid metabolism play crucial roles in the development and progression of HCC.Enhanced lipid synthesis promotes HCC progression,and lncRNAs can reprogram the expression of lipogenic enzymes.Consequently,lipid metabolism-related(LMR)-lncRNAs regulate lipid anabolism,accelerating the onset and progression of HCC.This suggests that LMR-lncRNAs could serve as novel prognostic biomarkers and therapeutic targets.展开更多
On 12th August 2015,a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province,China,which claimed the lives of 65 miners.No heavy rainfalls,earthquakes,and mining blasts we...On 12th August 2015,a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province,China,which claimed the lives of 65 miners.No heavy rainfalls,earthquakes,and mining blasts were recorded before the incident.Therefore,the failure mechanism and the cause of the long run-out movement are always in arguments.In this paper,we conducted a detailed field investigation,laboratory tests,block theory analysis,and numerical simulation to investigate the failure and long run-out mechanisms of the landslide.The field investigation results show that the source material of the rock landslide is a huge dolomite wedge block bedding on siliceous shale layers.Uniaxial compression tests indicate that the uniaxial compression strength of the intact dolomite is 130-140MPa and the dolomite shows a brittle failure mode.Due to the progressive downward erosion of the gully,the dolomite rock bridge at the slope toe became thinner.As the compression stress in the dolomite bridge increased to surpass its strength,the brittle failure of the bridge occurred.Then huge potential energy was released following the disintegration of the landslide,which led to the high acceleration of this rock landslide.The 3D discrete element simulation results suggest that the low intergranular friction contributes to the long run-out movement of this rock landslide.展开更多
Long non-coding RNAs(lncRNAs),with transcript lengths exceeding 200 nucleotides and little or no protein-coding capacity,have been found to impact colorectal cancer(CRC)through various biological processes.LncRNA expr...Long non-coding RNAs(lncRNAs),with transcript lengths exceeding 200 nucleotides and little or no protein-coding capacity,have been found to impact colorectal cancer(CRC)through various biological processes.LncRNA expression can regulate autophagy,which plays dual roles in the initiation and progression of cancers,including CRC.Abnormal expression of lncRNAs is associated with the emergence of chemoresistance.Moreover,it has been confirmed that targeting autophagy through lncRNA regulation could be a viable approach for combating chemoresistance.Two recent studies titled“Human β-defensin-1 affects the mammalian target of rapamycin pathway and autophagy in colon cancer cells through long non-coding RNA TCONS_00014506”and“Upregulated lncRNA PRNT promotes progression and oxaliplatin resistance of colorectal cancer cells by regulating HIPK2 transcription”revealed novel insights into lncRNAs associated with autophagy and oxaliplatin resistance in CRC,respectively.In this editorial,we particularly focus on the regulatory role of lncRNAs in CRC-related autophagy and chemoresistance since the regulation of chemotherapeutic sensitivity by intervening with the lncRNAs involved in the autophagy process has become a promising new approach for cancer treatment.展开更多
All-solid-state lithium-sulfur batteries(ASSLSBs) have become one of the most potential candidates for the next-generation high-energy systems due to their intrinsic safety and high theoretical energy density.However,...All-solid-state lithium-sulfur batteries(ASSLSBs) have become one of the most potential candidates for the next-generation high-energy systems due to their intrinsic safety and high theoretical energy density.However, PEO-based ASSLSBs face the dilemma of insufficient Coulombic efficiency and long-term stability caused by the coupling problems of dendrite growth of anode and polysulfide shuttle of cathode. In this work, 1,3,5-trioxane(TOX) is used as a functional additive to design a PEO-based composite solidstate electrolyte(denoted as TOX-CSE), which realizes the stable long-term cycle of an ASSLSB. The results show that TOX can in-situ decompose on the anode to form a composite solid electrolyte interphase(SEI) layer with rich-organic component. It yields a high average modulus of 5.0 GPa, greatly improving the mechanical stability of the SEI layer and thus inhibiting the growth of dendrites. Also,the robust SEI layer can act as a barrier to block the side reaction between polysulfides and lithium metal.As a result, a Li-Li symmetric cell assembled with a TOX-CSE exhibits prolonged cycling stability over 2000 h at 0.2 m A cm^(-2). The ASSLSB also shows a stable cycling performance of 500 cycles at 0.5 C.This work reveals the structure–activity relationship between the mechanical property of interface layer and the battery's cycling stability.展开更多
Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures....Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.Herein,a flame-retardant,low-cost and thermally stable long chain phosphate ester based(tributyl phosphate,TBP)electrolyte is reported,which can effectively enhance the cycling stability of highly loaded high-nickel LMBs with high safety through co-solvation strategy.The interfacial compatibility between TBP and electrode is effectively improved using a short-chain ether(glycol dimethyl ether,DME),and a specially competitive solvation structure is further constructed using lithium borate difluorooxalate(LiDFOB)to form the stable and inorganic-rich electrode interphases.Benefiting from the presence of the cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)enriched with LiF and Li_(x)PO_(y)F_(z),the electrolyte demonstrates excellent cycling stability assembled using a 50μm lithium foil anode in combination with a high loading NMC811(15.4 mg cm^(-2))cathode,with 88%capacity retention after 120 cycles.Furthermore,the electrolyte exhibits excellent high-temperature characteristics when used in a 1-Ah pouch cell(N/P=0.26),and higher thermal runaway temperature(238℃)in the ARC(accelerating rate calorimeter)demonstrating high safety.This novel electrolyte adopts long-chain phosphate as the main solvent for the first time,and would provide a new idea for the development of extremely high safety and high-temperature electrolytes.展开更多
BACKGROUND Enzymatic fasciotomy with collagenase clostridium histolyticum(CCH)has revolutionized the treatment for Dupuytren’s contracture(DC).Despite its benefits,the long-term outcomes remain unclear.This study pre...BACKGROUND Enzymatic fasciotomy with collagenase clostridium histolyticum(CCH)has revolutionized the treatment for Dupuytren’s contracture(DC).Despite its benefits,the long-term outcomes remain unclear.This study presented a comprehensive 10-year follow-up assessment of the enduring effects of CCH on patients with DC.AIM To compare the short-term(12 wk)and long-term(10 years)outcomes on CCH treatment in patients with DC.METHODS A cohort of 45 patients was treated with CCH at the metacarpophalangeal(MCP)joint and the proximal interphalangeal(PIP)joint and underwent systematic reevaluation.The study adhered to multicenter trial protocols,and assessments were conducted at 12 wk,7 years,and 10 years post-surgery.RESULTS Thirty-seven patients completed the 10-year follow-up.At 10 years,patients treated at the PIP joint exhibited a 100%recurrence.However,patients treated at the MCP joint only showed a 50%recurrence.Patient satisfaction varied,with a lower satisfaction reported in PIP joint cases.Recurrence exceeding 20 degrees on the total passive extension deficit was observed,indicating a challenge for sustained efficacy.Significant differences were noted between outcomes at the 7-year and 10-year intervals.CONCLUSION CCH demonstrated sustained efficacy when applied to the MCP joint.However,caution is warranted for CCH treatment at the PIP joint due to a high level of recurrence and low patient satisfaction.Re-intervention is needed within a decade of treatment.展开更多
Introduction: Pseudarthrosis (PSA) of the diaphysis of long bones still remains a current problem, despite improvements in the treatment of these fractures. Our study aims to study the epidemiological and therapeutic ...Introduction: Pseudarthrosis (PSA) of the diaphysis of long bones still remains a current problem, despite improvements in the treatment of these fractures. Our study aims to study the epidemiological and therapeutic aspects of PSA of the diaphysis of long bones. Method: This retrospective work concerns 30 cases of non-union of the diaphysis of long bones treated in the orthopedic and trauma surgery department at Donka National Hospital, during a period of 18 months from January 1, 2019 to June 30, 2020. Results: We recruited 30 patients, 80% of whom were male, with an average age of 39.9 years. Public road accidents (AVP) represented the main cause of fractures of the diaphysis of long bones 87%, they were open in 25 cases or 83%. The fractures were located in the middle 1/3 of the diaphysis of the long bones in 50% of cases. Treatment of initial fractures was traditional in 21 cases, orthopedic in 2 cases and surgical in 7 cases. It was aseptic nonunion in 28 cases (93%) and septic nonunion in 2 cases. They were hypertrophic in 7 cases, slightly hypertrophic in 5 cases, oligotrophic in 11 cases, atrophic in 6 cases and with bone defect in 1 case. The treatment was based on osteosynthesis including 16 cases of screwed “PV” plate: 7 cases of centromedullary “ECM” nailing, 2 cases of external fixator, 1 case of broaching and 4 cases of Plastering. The results according to ASAMI criteria on an anatomical level were excellent in 19 cases, good in 3 cases and poor in 3 cases, with a union rate of 76%. And 5 patients undergoing consolidation. Conclusion: Based on the literature data and the experience of our department, the true treatment of PSA requires correct management of the initial fracture without forgetting the interest in preventing AVP which appears to be an element essential, making it possible to reduce the incidence of fractures of the diaphysis.展开更多
With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning ...With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning.展开更多
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility wit...Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility with electrodes.Herein,a novel all-solid polymer electrolyte(PPLCE)was fabricated by the copolymer network of liquid crystalline monomers and poly(ethylene glycol)dimethacrylate(PEGDMA)acts as a structural frame,combined with poly(ethylene glycol)diglycidyl ether short chain interspersed serving as mobile ion transport entities.The preparaed PPLCEs exhibit excellent mechanical property and out-standing electrochemical performances,which is attributed to their unique three-dimensional cocontinuous structure,characterized by a cross-linked semi-interpenetrating network and an ionic liquid phase,resulting in a distinctive nanostructure with short-range order and long-range disorder.Remarkably,the addition of PEGDMA is proved to be critical to the comprehensive performance of the PPLCEs,which effectively modulates the microscopic morphology of polymer networks and improves the mechanical properties as well as cycling stability of the solid electrolyte.When used in a lithiumion symmetrical battery configuration,the 6 wt%-PPLCE exhibites super stability,sustaining operation for over 2000 h at 30 C,with minimal and consistent overpotential of 50 mV.The resulting Li|PPLCE|LFP solid-state battery demonstrates high discharge specific capacities of 160.9 and 120.1 mA h g^(-1)at current densities of 0.2 and 1 C,respectively.Even after more than 300 cycles at a current density of 0.2 C,it retaines an impressive 73.5%capacity.Moreover,it displayes stable cycling for over 180 cycles at a high current density of 0.5C.The super cycle stability may promote the application for ultralong-life all solid-state lithium metal batteries.展开更多
BACKGROUND China's most frequent malignancy is gastric cancer(GC),which has a very poor survival rate,and the survival rate for patients with advanced GC is dismal.Pyroptosis has been connected to the genesis and ...BACKGROUND China's most frequent malignancy is gastric cancer(GC),which has a very poor survival rate,and the survival rate for patients with advanced GC is dismal.Pyroptosis has been connected to the genesis and development of cancer.The function of pyroptosis-related long non-coding RNAs(PRLs)in GC,on the other hand,remains uncertain.AIM To explore the construction and comprehensive analysis of the prognostic characteristics of long non-coding RNA(lncRNA)related to pyroptosis in GC patients.METHODS The TCGA database provided us with 352 stomach adenocarcinoma samples,and we obtained 28 pyroptotic genes from the Reactome database.We examined the correlation between lncRNAs and pyroptosis using the Pearson correlation coefficient.Prognosis-related PRLs were identified through univariate Cox analysis.A predictive signature was constructed using stepwise Cox regression analysis,and its reliability and independence were assessed.To facilitate clinical application,a nomogram was created based on this signature.we analyzed differences in immune cell infiltration,immune function,and checkpoints between the high-risk group(HRG)and low-risk group(LRG).RESULTS Five hundred and twenty-three PRLs were screened from all lncRNAs(absolute correlation coefficient>0.4,P<0.05).Nine PRLs were included in the risk prediction signature that was created through stepwise Cox regression analysis.We determined the risk score for GC patients and employed the median value as the dividing line between HRG and LRG.The ability of the risk signature to predict the overall survival(OS)of GC is demonstrated by the Kaplan-Meier analysis,risk curve,receiver operating characteristic curve,and decision curve analysis curve.The risk signature was shown to be an independent prognostic factor for OS in both univariate and multivariate Cox regression analyses.HRG showed a more efficient local immune response or modulation compared to LRG,as indicated by the predicted signal pathway analysis and examination of immune cell infiltration,function,and checkpoints(P<0.05).CONCLUSION In general,we have created a brand-new prognostic signature using PRLs,which may provide ideas for immunotherapy in patients with GC.展开更多
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan....A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively.展开更多
Thermally activated delayedfluorescence(TADF)molecules are regarded as promis-ing materials for realizing high-performance organic light-emitting diodes(OLEDs).The connecting groups between donor(D)and acceptor(A)units...Thermally activated delayedfluorescence(TADF)molecules are regarded as promis-ing materials for realizing high-performance organic light-emitting diodes(OLEDs).The connecting groups between donor(D)and acceptor(A)units in D–A type TADF molecules could affect the charge transfer and luminescence performance of TADF materials in aggregated states.In this work,we design and synthesize four TADF molecules using planar and twisted linkers to connect the aza-azulene donor(D)and triazine acceptor(A).Compared with planar linkers,the twisted ones(Az-NP-T and Az-NN-T)can enhance A–A aggregation interaction between adjacent molecules to balance hole and electron density.As a result,highly efficient and stable deep-red top-emission OLEDs with a high electroluminescence efficiency of 57.3%and an impressive long operational lifetime(LT_(95)∼30,000 h,initial luminance of 1000 cd m^(-2))are obtained.This study provides a new strategy for designing more effi-cient and stable electroluminescent devices through linker aggregation engineering in donor–acceptor molecules.展开更多
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh...Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection.展开更多
Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realiz...Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities.展开更多
Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aer...Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number.展开更多
This commentary explores the burgeoning field of disulfidptosis-related long noncoding RNAs(lncRNAs)in the prognosis and therapeutic targeting of colorectal cancer(CRC).By evaluating recent research,including the pivo...This commentary explores the burgeoning field of disulfidptosis-related long noncoding RNAs(lncRNAs)in the prognosis and therapeutic targeting of colorectal cancer(CRC).By evaluating recent research,including the pivotal study"Predicting colorectal cancer prognosis based on long noncoding RNAs of disulfidptosis genes"by Wang et al,this analysis underscores the critical role of lncRNAs in deciphering the molecular complexities of CRC.Highlighting the innovative methodologies and significant findings,I discuss the implications for patient survival,therapeutic response,and the potential of lncRNAs as biomarkers for precision medicine.The integration of bioinformatics,clinical databases,and molecular biology in these studies offers a promising avenue for advancing CRC treatment strategies and improving patient outcomes.展开更多
文摘BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify genomic instability(GI).Nevertheless,GI-LncRNAs remain largely unexplored.This study established a GI-derived LncRNA signature(GILncSig)that can predict the prognosis of HCC patients.AIM To establish a GILncSig that can predict the prognosis of HCC patients.METHODS Identification of GI-LncRNAs was conducted by combining LncRNA expression and somatic mutation profiles.The GI-LncRNAs were then analyzed for functional enrichment.The GILncSig was established in the training set by Cox regression analysis,and its predictive ability was verified in the testing set and TCGA set.In addition,we explored the effects of the GILncSig and TP53 on prognosis.RESULTS A total of 88 GI-LncRNAs were found,and functional enrichment analysis showed that their functions were mainly involved in small molecule metabolism and GI.The GILncSig was constructed by 5 LncRNAs(miR210HG,AC016735.1,AC116351.1,AC010643.1,LUCAT1).In the training set,the prognosis of high-risk patients was significantly worse than that of low-risk patients,and similar results were verified in the testing set and TCGA set.Multivariate Cox regression analysis and stratified analysis confirmed that the GILncSig could be used as an independent prognostic factor.Receiver operating characteristic curve analysis of the GILncSig showed that the area under the curve(0.773)was higher than the two LncRNA signatures published recently.Furthermore,the GILncSig may have a better predictive performance than TP53 mutation status alone.CONCLUSION We established a GILncSig that can predict the prognosis of HCC patients,which will help to guide prognostic evaluation and treatment decisions.
文摘Objective:To investigate the prevalence and risk factors associated with long COVID symptoms among children and adolescents who have recovered from COVID-19.Methods:This study applied a cross-sectional approach within community settings in a southern province of Vietnam.A structured questionnaire featuring socio-demographic information and common long COVID symptoms was employed.Phi correlation coefficients assessed associations among pairs of long COVID symptoms.Additionally,multivariable logistic regression models were performed to investigate the risk factors of long COVID in recovered COVID-19 children and adolescents.Results:Among 422 participants,39.3%reported long COVID symptoms,with a prevalence of 45.2%(SD=0.5)in children and 22.2%(SD=0.4)in adolescents.Common symptoms reported were cough 34.6%(SD=0.5),fatigue 20.6%(SD=0.4),shortness of breath 10.9%(SD=0.3),and lack of appetite 6.6%(SD=0.3).Concerning risk factors of long COVID,a higher risk was observed among demographic groups,including girls(OR 1.25,95%CI 1.15-1.37;P<0.001,reference:boys),children compared to adolescents(OR 1.24,95%CI 1.12-1.37;P<0.001),overweight individuals(OR 1.14,95%CI 1.02-1.27;P=0.018,reference:healthy weight),and participants without any COVID-19 vaccination(OR 1.36,95%CI 1.20-1.54;P<0.001),or have received only one single dose(OR 1.35,95%CI 1.10-1.64;P=0.004)compared to those who have received two doses.Besides,patients with a COVID-19 treatment duration exceeding two weeks also had a higher risk of long COVID(OR 1.32,95%CI 1.09-1.60;P=0.003)than those who recovered less than seven days.Conclusions:The insights from this study provide crucial guidance for predicting the factors associated with the occurrence of long COVID in pediatric patients,contributing to strategic interventions aimed at mitigating the long COVID risks among children and adolescents in Vietnam.
基金Supported by National Key R&D Program of China(2021YFA0715500)National Natural Science Foundation of China(NSFC)(12227901)+1 种基金Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB0580000)Chinese Academy of Sciences President's In-ternational Fellowship Initiative(2021PT0007).
文摘Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experimentally demonstrated a 4 mm size,all-silicon metasurface metalens with large depth of focus opera-tional across a broadband range from 9µm to 11.5µm.The experimental results confirm effective focusing and imaging capabilities of the metalens in LWIR region,thus paving the way for practical LWIR applications of met-alens technology.
基金supported by the US Department of Energy (DOE),the Office of Nuclear Energy,Spent Fuel and Waste Science and Technology Campaign,under Contract Number DE-AC02-05CH11231the National Energy Technology Laboratory under the award number FP00013650 at Lawrence Berkeley National Laboratory.
文摘Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections and geologic disposal of nuclear waste.Such activities are expected to rise in the future making it necessary to assess their short-and long-term safety.Here,a new machine learning(ML)approach to model pore pressure and fault displacements in response to high-pressure fluid injection cycles is developed.The focus is on fault behavior near the injection borehole.To capture the temporal dependencies in the data,long short-term memory(LSTM)networks are utilized.To prevent error accumulation within the forecast window,four critical measures to train a robust LSTM model for predicting fault response are highlighted:(i)setting an appropriate value of LSTM lag,(ii)calibrating the LSTM cell dimension,(iii)learning rate reduction during weight optimization,and(iv)not adopting an independent injection cycle as a validation set.Several numerical experiments were conducted,which demonstrated that the ML model can capture peaks in pressure and associated fault displacement that accompany an increase in fluid injection.The model also captured the decay in pressure and displacement during the injection shut-in period.Further,the ability of an ML model to highlight key changes in fault hydromechanical activation processes was investigated,which shows that ML can be used to monitor risk of fault activation and leakage during high pressure fluid injections.
基金Supported by National Natural Science Foundation of China,No.82170593,No.81700503the National Key Research and Development Program of China,No.2021YFC2700802.
文摘The incidence rates of hepatocellular carcinoma(HCC)have increased in recent decades.Despite advancements in therapy and early diagnosis improving shortterm prognosis,long-term outcomes remain poor.Long noncoding RNAs(lncRNAs)and lipid metabolism play crucial roles in the development and progression of HCC.Enhanced lipid synthesis promotes HCC progression,and lncRNAs can reprogram the expression of lipogenic enzymes.Consequently,lipid metabolism-related(LMR)-lncRNAs regulate lipid anabolism,accelerating the onset and progression of HCC.This suggests that LMR-lncRNAs could serve as novel prognostic biomarkers and therapeutic targets.
基金funded by the National Key R&D Program of China(2021YFE0111900)the China Postdoctoral Science Foundation(2023M730353)+1 种基金Major Program of National Natural Science Foundation of China(Grant No.42041006)Natural Science Basic Research Program of Shaanxi(Program No.2022JM-167).
文摘On 12th August 2015,a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province,China,which claimed the lives of 65 miners.No heavy rainfalls,earthquakes,and mining blasts were recorded before the incident.Therefore,the failure mechanism and the cause of the long run-out movement are always in arguments.In this paper,we conducted a detailed field investigation,laboratory tests,block theory analysis,and numerical simulation to investigate the failure and long run-out mechanisms of the landslide.The field investigation results show that the source material of the rock landslide is a huge dolomite wedge block bedding on siliceous shale layers.Uniaxial compression tests indicate that the uniaxial compression strength of the intact dolomite is 130-140MPa and the dolomite shows a brittle failure mode.Due to the progressive downward erosion of the gully,the dolomite rock bridge at the slope toe became thinner.As the compression stress in the dolomite bridge increased to surpass its strength,the brittle failure of the bridge occurred.Then huge potential energy was released following the disintegration of the landslide,which led to the high acceleration of this rock landslide.The 3D discrete element simulation results suggest that the low intergranular friction contributes to the long run-out movement of this rock landslide.
基金Supported by the National Natural Science Foundation of China,No.81472782National Clinical Key Specialty Department(Oncology)of China,No.YWC-ZKJS-2023-01Research Fund of Yili Institute of Clinical Medicine,No.yl2021ms02.
文摘Long non-coding RNAs(lncRNAs),with transcript lengths exceeding 200 nucleotides and little or no protein-coding capacity,have been found to impact colorectal cancer(CRC)through various biological processes.LncRNA expression can regulate autophagy,which plays dual roles in the initiation and progression of cancers,including CRC.Abnormal expression of lncRNAs is associated with the emergence of chemoresistance.Moreover,it has been confirmed that targeting autophagy through lncRNA regulation could be a viable approach for combating chemoresistance.Two recent studies titled“Human β-defensin-1 affects the mammalian target of rapamycin pathway and autophagy in colon cancer cells through long non-coding RNA TCONS_00014506”and“Upregulated lncRNA PRNT promotes progression and oxaliplatin resistance of colorectal cancer cells by regulating HIPK2 transcription”revealed novel insights into lncRNAs associated with autophagy and oxaliplatin resistance in CRC,respectively.In this editorial,we particularly focus on the regulatory role of lncRNAs in CRC-related autophagy and chemoresistance since the regulation of chemotherapeutic sensitivity by intervening with the lncRNAs involved in the autophagy process has become a promising new approach for cancer treatment.
基金National Natural Science Foundation of China (Grant Nos. 22178125 and 21875071)。
文摘All-solid-state lithium-sulfur batteries(ASSLSBs) have become one of the most potential candidates for the next-generation high-energy systems due to their intrinsic safety and high theoretical energy density.However, PEO-based ASSLSBs face the dilemma of insufficient Coulombic efficiency and long-term stability caused by the coupling problems of dendrite growth of anode and polysulfide shuttle of cathode. In this work, 1,3,5-trioxane(TOX) is used as a functional additive to design a PEO-based composite solidstate electrolyte(denoted as TOX-CSE), which realizes the stable long-term cycle of an ASSLSB. The results show that TOX can in-situ decompose on the anode to form a composite solid electrolyte interphase(SEI) layer with rich-organic component. It yields a high average modulus of 5.0 GPa, greatly improving the mechanical stability of the SEI layer and thus inhibiting the growth of dendrites. Also,the robust SEI layer can act as a barrier to block the side reaction between polysulfides and lithium metal.As a result, a Li-Li symmetric cell assembled with a TOX-CSE exhibits prolonged cycling stability over 2000 h at 0.2 m A cm^(-2). The ASSLSB also shows a stable cycling performance of 500 cycles at 0.5 C.This work reveals the structure–activity relationship between the mechanical property of interface layer and the battery's cycling stability.
基金supported by the National Natural Science Foundation of China (grant No.52072322)the Department of Science and Technology of Sichuan Province (CN) (grant no.23GJHZ0147,23ZDYF0262,2022YFG0294)Research and Innovation Fund for Graduate Students of Southwest Petroleum University (No.:2022KYCX111)。
文摘Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.Herein,a flame-retardant,low-cost and thermally stable long chain phosphate ester based(tributyl phosphate,TBP)electrolyte is reported,which can effectively enhance the cycling stability of highly loaded high-nickel LMBs with high safety through co-solvation strategy.The interfacial compatibility between TBP and electrode is effectively improved using a short-chain ether(glycol dimethyl ether,DME),and a specially competitive solvation structure is further constructed using lithium borate difluorooxalate(LiDFOB)to form the stable and inorganic-rich electrode interphases.Benefiting from the presence of the cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)enriched with LiF and Li_(x)PO_(y)F_(z),the electrolyte demonstrates excellent cycling stability assembled using a 50μm lithium foil anode in combination with a high loading NMC811(15.4 mg cm^(-2))cathode,with 88%capacity retention after 120 cycles.Furthermore,the electrolyte exhibits excellent high-temperature characteristics when used in a 1-Ah pouch cell(N/P=0.26),and higher thermal runaway temperature(238℃)in the ARC(accelerating rate calorimeter)demonstrating high safety.This novel electrolyte adopts long-chain phosphate as the main solvent for the first time,and would provide a new idea for the development of extremely high safety and high-temperature electrolytes.
文摘BACKGROUND Enzymatic fasciotomy with collagenase clostridium histolyticum(CCH)has revolutionized the treatment for Dupuytren’s contracture(DC).Despite its benefits,the long-term outcomes remain unclear.This study presented a comprehensive 10-year follow-up assessment of the enduring effects of CCH on patients with DC.AIM To compare the short-term(12 wk)and long-term(10 years)outcomes on CCH treatment in patients with DC.METHODS A cohort of 45 patients was treated with CCH at the metacarpophalangeal(MCP)joint and the proximal interphalangeal(PIP)joint and underwent systematic reevaluation.The study adhered to multicenter trial protocols,and assessments were conducted at 12 wk,7 years,and 10 years post-surgery.RESULTS Thirty-seven patients completed the 10-year follow-up.At 10 years,patients treated at the PIP joint exhibited a 100%recurrence.However,patients treated at the MCP joint only showed a 50%recurrence.Patient satisfaction varied,with a lower satisfaction reported in PIP joint cases.Recurrence exceeding 20 degrees on the total passive extension deficit was observed,indicating a challenge for sustained efficacy.Significant differences were noted between outcomes at the 7-year and 10-year intervals.CONCLUSION CCH demonstrated sustained efficacy when applied to the MCP joint.However,caution is warranted for CCH treatment at the PIP joint due to a high level of recurrence and low patient satisfaction.Re-intervention is needed within a decade of treatment.
文摘Introduction: Pseudarthrosis (PSA) of the diaphysis of long bones still remains a current problem, despite improvements in the treatment of these fractures. Our study aims to study the epidemiological and therapeutic aspects of PSA of the diaphysis of long bones. Method: This retrospective work concerns 30 cases of non-union of the diaphysis of long bones treated in the orthopedic and trauma surgery department at Donka National Hospital, during a period of 18 months from January 1, 2019 to June 30, 2020. Results: We recruited 30 patients, 80% of whom were male, with an average age of 39.9 years. Public road accidents (AVP) represented the main cause of fractures of the diaphysis of long bones 87%, they were open in 25 cases or 83%. The fractures were located in the middle 1/3 of the diaphysis of the long bones in 50% of cases. Treatment of initial fractures was traditional in 21 cases, orthopedic in 2 cases and surgical in 7 cases. It was aseptic nonunion in 28 cases (93%) and septic nonunion in 2 cases. They were hypertrophic in 7 cases, slightly hypertrophic in 5 cases, oligotrophic in 11 cases, atrophic in 6 cases and with bone defect in 1 case. The treatment was based on osteosynthesis including 16 cases of screwed “PV” plate: 7 cases of centromedullary “ECM” nailing, 2 cases of external fixator, 1 case of broaching and 4 cases of Plastering. The results according to ASAMI criteria on an anatomical level were excellent in 19 cases, good in 3 cases and poor in 3 cases, with a union rate of 76%. And 5 patients undergoing consolidation. Conclusion: Based on the literature data and the experience of our department, the true treatment of PSA requires correct management of the initial fracture without forgetting the interest in preventing AVP which appears to be an element essential, making it possible to reduce the incidence of fractures of the diaphysis.
文摘With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning.
基金supported by the National Natural Science Foundation of China(52003293,51927806,52272258)the Fundamental Research Funds for the Central Universities(2023ZKPYJD07)the Beijing Nova Program(20220484214).
文摘Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility with electrodes.Herein,a novel all-solid polymer electrolyte(PPLCE)was fabricated by the copolymer network of liquid crystalline monomers and poly(ethylene glycol)dimethacrylate(PEGDMA)acts as a structural frame,combined with poly(ethylene glycol)diglycidyl ether short chain interspersed serving as mobile ion transport entities.The preparaed PPLCEs exhibit excellent mechanical property and out-standing electrochemical performances,which is attributed to their unique three-dimensional cocontinuous structure,characterized by a cross-linked semi-interpenetrating network and an ionic liquid phase,resulting in a distinctive nanostructure with short-range order and long-range disorder.Remarkably,the addition of PEGDMA is proved to be critical to the comprehensive performance of the PPLCEs,which effectively modulates the microscopic morphology of polymer networks and improves the mechanical properties as well as cycling stability of the solid electrolyte.When used in a lithiumion symmetrical battery configuration,the 6 wt%-PPLCE exhibites super stability,sustaining operation for over 2000 h at 30 C,with minimal and consistent overpotential of 50 mV.The resulting Li|PPLCE|LFP solid-state battery demonstrates high discharge specific capacities of 160.9 and 120.1 mA h g^(-1)at current densities of 0.2 and 1 C,respectively.Even after more than 300 cycles at a current density of 0.2 C,it retaines an impressive 73.5%capacity.Moreover,it displayes stable cycling for over 180 cycles at a high current density of 0.5C.The super cycle stability may promote the application for ultralong-life all solid-state lithium metal batteries.
基金Supported by The Scientific Research Project of Integrated Traditional Chinese and Western Medicine of Tianjin Health Commission Administration of Traditional Chinese Medicine,No.2021010 and No.2023166Xiao-Ping Chen Foundation for the Development of Science and Technology of Hubei Province,No.CXPJJH122002-073.
文摘BACKGROUND China's most frequent malignancy is gastric cancer(GC),which has a very poor survival rate,and the survival rate for patients with advanced GC is dismal.Pyroptosis has been connected to the genesis and development of cancer.The function of pyroptosis-related long non-coding RNAs(PRLs)in GC,on the other hand,remains uncertain.AIM To explore the construction and comprehensive analysis of the prognostic characteristics of long non-coding RNA(lncRNA)related to pyroptosis in GC patients.METHODS The TCGA database provided us with 352 stomach adenocarcinoma samples,and we obtained 28 pyroptotic genes from the Reactome database.We examined the correlation between lncRNAs and pyroptosis using the Pearson correlation coefficient.Prognosis-related PRLs were identified through univariate Cox analysis.A predictive signature was constructed using stepwise Cox regression analysis,and its reliability and independence were assessed.To facilitate clinical application,a nomogram was created based on this signature.we analyzed differences in immune cell infiltration,immune function,and checkpoints between the high-risk group(HRG)and low-risk group(LRG).RESULTS Five hundred and twenty-three PRLs were screened from all lncRNAs(absolute correlation coefficient>0.4,P<0.05).Nine PRLs were included in the risk prediction signature that was created through stepwise Cox regression analysis.We determined the risk score for GC patients and employed the median value as the dividing line between HRG and LRG.The ability of the risk signature to predict the overall survival(OS)of GC is demonstrated by the Kaplan-Meier analysis,risk curve,receiver operating characteristic curve,and decision curve analysis curve.The risk signature was shown to be an independent prognostic factor for OS in both univariate and multivariate Cox regression analyses.HRG showed a more efficient local immune response or modulation compared to LRG,as indicated by the predicted signal pathway analysis and examination of immune cell infiltration,function,and checkpoints(P<0.05).CONCLUSION In general,we have created a brand-new prognostic signature using PRLs,which may provide ideas for immunotherapy in patients with GC.
基金National Key Research and Development Program of China (Grant No. 2022YFE0102700)National Natural Science Foundation of China (Grant No. 52102420)+2 种基金research project “Safe Da Batt” (03EMF0409A) funded by the German Federal Ministry of Digital and Transport (BMDV)China Postdoctoral Science Foundation (Grant No. 2023T160085)Sichuan Science and Technology Program (Grant No. 2024NSFSC0938)。
文摘A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively.
基金National Key R&D Program of China,Grant/Award Number:2022YFE0109000National Natural Science Foundation of China,Grant/Award Number:21975152+1 种基金China Postdoctoral Science Foundation,Grant/Award Number:2022M722028Deutsche Forschungsgemeinschaft,Grant/Award Number:3DMM2O−EXC−2082/1−390761711。
文摘Thermally activated delayedfluorescence(TADF)molecules are regarded as promis-ing materials for realizing high-performance organic light-emitting diodes(OLEDs).The connecting groups between donor(D)and acceptor(A)units in D–A type TADF molecules could affect the charge transfer and luminescence performance of TADF materials in aggregated states.In this work,we design and synthesize four TADF molecules using planar and twisted linkers to connect the aza-azulene donor(D)and triazine acceptor(A).Compared with planar linkers,the twisted ones(Az-NP-T and Az-NN-T)can enhance A–A aggregation interaction between adjacent molecules to balance hole and electron density.As a result,highly efficient and stable deep-red top-emission OLEDs with a high electroluminescence efficiency of 57.3%and an impressive long operational lifetime(LT_(95)∼30,000 h,initial luminance of 1000 cd m^(-2))are obtained.This study provides a new strategy for designing more effi-cient and stable electroluminescent devices through linker aggregation engineering in donor–acceptor molecules.
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through Small Group Research Project under Grant Number RGP1/261/45.
文摘Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection.
文摘Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities.
基金supported by the National Natural Science Foundation of China (Grant No. 52072267)Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems (Grant No. 23DZ2229029)
文摘Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number.
文摘This commentary explores the burgeoning field of disulfidptosis-related long noncoding RNAs(lncRNAs)in the prognosis and therapeutic targeting of colorectal cancer(CRC).By evaluating recent research,including the pivotal study"Predicting colorectal cancer prognosis based on long noncoding RNAs of disulfidptosis genes"by Wang et al,this analysis underscores the critical role of lncRNAs in deciphering the molecular complexities of CRC.Highlighting the innovative methodologies and significant findings,I discuss the implications for patient survival,therapeutic response,and the potential of lncRNAs as biomarkers for precision medicine.The integration of bioinformatics,clinical databases,and molecular biology in these studies offers a promising avenue for advancing CRC treatment strategies and improving patient outcomes.