In this paper,we introduce the tectonic setting,historical earthquake focal mechanisms and geodynamic environment of Tienshan and its neighboring regions, and draw a conclusion that large earthquakes in the Tienshan s...In this paper,we introduce the tectonic setting,historical earthquake focal mechanisms and geodynamic environment of Tienshan and its neighboring regions, and draw a conclusion that large earthquakes in the Tienshan seismic zone are governed mainly by the pushing from Hindu Kush-Pamir syntax. Secondly,the relationship of large earthquakes in the Hindu Kush-Pamir region and the Tienshan seismic zone is investigated,and synchronization features are found existing in the grouped large earthquakes between the large earthquakes in two regions. The relationship between intermediate-focus large earthquakes in Hindu Kush-Pamir and shallow large earthquakes in the Tienshan seismic zone is also discussed. The same synchronization characteristics are found,and the intensity and frequency of intermediate-focus earthquakes are fiercer, while large earthquakes in the Tienshan seismic zone are more intense,with a wider distribution range. The above results confirm the geodynamic correlativity between Hindu Kush-Pamir and the Tienshan seismic zone from the viewpoint of seismicity.展开更多
We employed a double-difference algorithm (hypoDD) to relocate earthquakes within the region bounded by 66°E-78°E and 32°N-42°N in the period of 1964-2003 reported by the International Seismologi...We employed a double-difference algorithm (hypoDD) to relocate earthquakes within the region bounded by 66°E-78°E and 32°N-42°N in the period of 1964-2003 reported by the International Seismological Center (ISC). The improved hypocentral locations delineate a double-layered Wadati-Benioff zone in the eastern Hindu Kush intermediate seismic belt. Based on this feature and other evidences, we propose that the intermediate-depth earthquakes beneath the Pamir-Hindu Kush region may occur in two collided subduction zones with opposite dip directions.展开更多
基金jointly sponsored by the National Key Technology R&D Program(2012BAK19B01-04)the Special Fund of Youth Working Group,Institute of Earthquake Science,China Earthquake Administration
文摘In this paper,we introduce the tectonic setting,historical earthquake focal mechanisms and geodynamic environment of Tienshan and its neighboring regions, and draw a conclusion that large earthquakes in the Tienshan seismic zone are governed mainly by the pushing from Hindu Kush-Pamir syntax. Secondly,the relationship of large earthquakes in the Hindu Kush-Pamir region and the Tienshan seismic zone is investigated,and synchronization features are found existing in the grouped large earthquakes between the large earthquakes in two regions. The relationship between intermediate-focus large earthquakes in Hindu Kush-Pamir and shallow large earthquakes in the Tienshan seismic zone is also discussed. The same synchronization characteristics are found,and the intensity and frequency of intermediate-focus earthquakes are fiercer, while large earthquakes in the Tienshan seismic zone are more intense,with a wider distribution range. The above results confirm the geodynamic correlativity between Hindu Kush-Pamir and the Tienshan seismic zone from the viewpoint of seismicity.
基金partly sup-ported by the National Fundamental Science Program of China under(No.2004cb418406)the National Natural Science Foundation of China(No.90814002)Key Projects in the National Science & Technology PillarProgram during the Eleventh Five-year Plan Period(No.2008BAC38B02-4)
文摘We employed a double-difference algorithm (hypoDD) to relocate earthquakes within the region bounded by 66°E-78°E and 32°N-42°N in the period of 1964-2003 reported by the International Seismological Center (ISC). The improved hypocentral locations delineate a double-layered Wadati-Benioff zone in the eastern Hindu Kush intermediate seismic belt. Based on this feature and other evidences, we propose that the intermediate-depth earthquakes beneath the Pamir-Hindu Kush region may occur in two collided subduction zones with opposite dip directions.