We propose an explicit multi-symplectic method to solve the two-dimensional Zakharov-Kuznetsov equation. The method combines the multi-symplectic Fourier pseudospectral method for spatial discretization and the Euler ...We propose an explicit multi-symplectic method to solve the two-dimensional Zakharov-Kuznetsov equation. The method combines the multi-symplectic Fourier pseudospectral method for spatial discretization and the Euler method for temporal discretization. It is verified that the proposed method has corresponding discrete multi-symplectic conservation laws. Numerical simulations indicate that the proposed scheme is characterized by excellent conservation.展开更多
In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equa- tion are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For thi...In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equa- tion are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann-Liouville derivative is used to convert the nonlinear time fractional KdV-KZK equation into the non- linear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV-KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV-KZK equation.展开更多
By means of the classical method, we investigate the (3+1)-dimensional Zakharov-Kuznetsov equation. The symmetry group of the (3+1)-dimensional Zakharov-Kuznetsov equation is studied first and the theorem of gro...By means of the classical method, we investigate the (3+1)-dimensional Zakharov-Kuznetsov equation. The symmetry group of the (3+1)-dimensional Zakharov-Kuznetsov equation is studied first and the theorem of group invariant solutions is constructed. Then using the associated vector fields of the obtained symmetry, we give the one-, two-, and three-parameter optimal systems of group-invariant solutions. Based on the optimal system, we derive the reductions and some new solutions of the (3+1)-dimensional Zakharov-Kuznetsov equation.展开更多
The modified Zakharov-Kuznetsov equation with the initial value problem is studied numerically by means of homotopy perturbation method. The analytical approximate solutions of the modified Zakharov-Kuznetsov equation...The modified Zakharov-Kuznetsov equation with the initial value problem is studied numerically by means of homotopy perturbation method. The analytical approximate solutions of the modified Zakharov-Kuznetsov equation are obtained. Choosing the form of the initial value, the single solitary wave, two solitary waves and rational solutions are presented, some of which are shown by the plots.展开更多
Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct dou...Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.展开更多
his paper studies the generalized (2 + 1)-dimensional Zakharov-Kuznetsov equation using the (G'/G)-expand method, we obtain many new explicit solutions of the generalized (2 + 1)-dimensional Zakharov-Kuznetsov equ...his paper studies the generalized (2 + 1)-dimensional Zakharov-Kuznetsov equation using the (G'/G)-expand method, we obtain many new explicit solutions of the generalized (2 + 1)-dimensional Zakharov-Kuznetsov equation, which include hyperbolic function solutions, trigonometric function solutions and rational function solutions and so on.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10971226, 91130013, and 11001270)the National Basic Research Program of China (Grant No. 2009CB723802)
文摘We propose an explicit multi-symplectic method to solve the two-dimensional Zakharov-Kuznetsov equation. The method combines the multi-symplectic Fourier pseudospectral method for spatial discretization and the Euler method for temporal discretization. It is verified that the proposed method has corresponding discrete multi-symplectic conservation laws. Numerical simulations indicate that the proposed scheme is characterized by excellent conservation.
文摘In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equa- tion are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann-Liouville derivative is used to convert the nonlinear time fractional KdV-KZK equation into the non- linear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV-KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV-KZK equation.
基金supported by the National Natural Science Foundation of China (Grant Nos.10735030 and 90718041)Shanghai Leading Academic Discipline Project,China (Grant No.B412)Program for Changjiang Scholars and Innovative Research Team in University,China (Grant No.IRT0734)
文摘By means of the classical method, we investigate the (3+1)-dimensional Zakharov-Kuznetsov equation. The symmetry group of the (3+1)-dimensional Zakharov-Kuznetsov equation is studied first and the theorem of group invariant solutions is constructed. Then using the associated vector fields of the obtained symmetry, we give the one-, two-, and three-parameter optimal systems of group-invariant solutions. Based on the optimal system, we derive the reductions and some new solutions of the (3+1)-dimensional Zakharov-Kuznetsov equation.
文摘The modified Zakharov-Kuznetsov equation with the initial value problem is studied numerically by means of homotopy perturbation method. The analytical approximate solutions of the modified Zakharov-Kuznetsov equation are obtained. Choosing the form of the initial value, the single solitary wave, two solitary waves and rational solutions are presented, some of which are shown by the plots.
文摘Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.
文摘his paper studies the generalized (2 + 1)-dimensional Zakharov-Kuznetsov equation using the (G'/G)-expand method, we obtain many new explicit solutions of the generalized (2 + 1)-dimensional Zakharov-Kuznetsov equation, which include hyperbolic function solutions, trigonometric function solutions and rational function solutions and so on.