Let j, k and m be three positive integers, a circular m-L(j, k)-labeling of a graph G is a mapping f: V(G)→{0, 1, …, m-1}such that f(u)-f(v)m≥j if u and v are adjacent, and f(u)-f(v)m≥k if u and v are...Let j, k and m be three positive integers, a circular m-L(j, k)-labeling of a graph G is a mapping f: V(G)→{0, 1, …, m-1}such that f(u)-f(v)m≥j if u and v are adjacent, and f(u)-f(v)m≥k if u and v are at distance two,where a-bm=min{a-b,m-a-b}. The minimum m such that there exists a circular m-L(j, k)-labeling of G is called the circular L(j, k)-labeling number of G and is denoted by σj, k(G). For any two positive integers j and k with j≤k,the circular L(j, k)-labeling numbers of trees, the Cartesian product and the direct product of two complete graphs are determined.展开更多
Let G be an outerplanar graph with maximum degree △. Let χ(G^2) and A(G) denote the chromatic number of the square and the L(2, 1)-labelling number of G, respectively. In this paper we prove the following resu...Let G be an outerplanar graph with maximum degree △. Let χ(G^2) and A(G) denote the chromatic number of the square and the L(2, 1)-labelling number of G, respectively. In this paper we prove the following results: (1) χ(G^2) = 7 if △= 6; (2) λ(G) ≤ △ +5 if △ ≥ 4, and ),(G)≤ 7 if △ = 3; and (3) there is an outerplanar graph G with △ = 4 such that )λ(G) = 7. These improve some known results on the distance two labelling of outerplanar graphs.展开更多
基金The National Natural Science Foundation of China(No.10971025)
文摘Let j, k and m be three positive integers, a circular m-L(j, k)-labeling of a graph G is a mapping f: V(G)→{0, 1, …, m-1}such that f(u)-f(v)m≥j if u and v are adjacent, and f(u)-f(v)m≥k if u and v are at distance two,where a-bm=min{a-b,m-a-b}. The minimum m such that there exists a circular m-L(j, k)-labeling of G is called the circular L(j, k)-labeling number of G and is denoted by σj, k(G). For any two positive integers j and k with j≤k,the circular L(j, k)-labeling numbers of trees, the Cartesian product and the direct product of two complete graphs are determined.
基金Supported by the National Natural Science Foundation of China(No.10771197)
文摘Let G be an outerplanar graph with maximum degree △. Let χ(G^2) and A(G) denote the chromatic number of the square and the L(2, 1)-labelling number of G, respectively. In this paper we prove the following results: (1) χ(G^2) = 7 if △= 6; (2) λ(G) ≤ △ +5 if △ ≥ 4, and ),(G)≤ 7 if △ = 3; and (3) there is an outerplanar graph G with △ = 4 such that )λ(G) = 7. These improve some known results on the distance two labelling of outerplanar graphs.