An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(...An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(TCF/LEF)transcription factor family,interacts with the Wnt signaling pathway regulator β-catenin and acts as a DNA-specific binding protein.This study sought to elucidate the impact of the interaction between miR 3293p and TCF7L1 on.the growth and apoptosis of OS and analyze the regulatory expression relationship between miRNA and mRNA in osteosarcoma cells using a variety of approaches.MiR329-3p was significantly downregulated,while TCF7L1 was considerably up-regulated in all examined OS cell lines.Additionally,a clinical comparison study was performed using the TCGA database.Subsequently,the regulatory relationship between miR-329-3p and TCF7L1 on the proliferation and apoptosis of OS cells was verified through in vitro and in vivo experiments.When miR 329-3p was transfected into the OS cell line,the expression of TCF7L1 decreased,the proliferation of OS cells was inhibited,the cytoskeleton disintegrated,and the nucleus condensed to fom apoptotic bodies.The expression of proteins that indicate apoptosis increased simultaneously.The cell cycle was arrested in the G0/G1 phase,and the G1/S transition was blocked.The introduction of miR 3293p also inhibited downstream Cyclin D1 of the Wnt pathway.Xenograf experiments indicated that the overexpression of miR-329-3p signi ficanly inhibited the growth of OS xenografts in nude mice,and the expression of TCF7L1 and C-Myc in tumor tssues decreased.MiR 329-3p was significantly reduced in OS cells and played a suppressive role in tumorigenesis and proliferation by targeting TCF7L1 both in vitro and in vivo.Osteosarcoma cell cycle arrest and pathway inhibition were observed upon the regulation of TCF7LI by miR 3293p.Summarizing these results,it can be inferred that miR.3293p exerts anticancer efects in osteosarcoma by inhibiting TCF7L1.展开更多
Background:Melanoma is a deadly skin tumor resulting from the malignant transformation of melanocytes.It is highly malignant and invasive,with the highest mortality rate among skin cancers.Acalypha australis L.(AAL),a...Background:Melanoma is a deadly skin tumor resulting from the malignant transformation of melanocytes.It is highly malignant and invasive,with the highest mortality rate among skin cancers.Acalypha australis L.(AAL),a plant with dual medicinal and culinary purposes,is commonly regarded as an edible wild vegetable in southern China.Additionally,AAL has a long history of medicinal use in China,often employed for its hemostatic,anti-diarrheal,and anti-inflammatory properties.Modern pharmacology has demonstrated that AAL possesses functions such as weight loss,antimicrobial activity,antiviral effects,and treatment for ulcerative colitis.However,there is currently no research available regarding its effectiveness and mechanisms of action on melanoma.Methods:In this investigation,we used methyl thiazolyl tetrazolium assay to detect cell viability,transwell assay to detect cell migration and invasion ability,and Western blot assay to detect relevant signaling pathways.Results:The present study reveals that 2 mg/mL AAL effectively suppresses the metastasis of B16 cells,while simultaneously triggering the expression of key apoptosis-related proteins,including Bcl-2,Bax,and cleaved caspased 3.Subsequent investigations demonstrate that AAL exerts this inhibitory effect via the PI3K/AKT signal transduction pathway,as evidenced by the observed deficits in Ras,AKT,p-AKT,and PI3K expression levels.Conclusion:These findings indicated that AAL could be a valuable therapeutic option for reducing the metastatic potential of B16 melanoma cells.展开更多
The effects of essential oil from Carpesium abrotanoides L.(CAEO)on the proliferation and apoptosis of human hepatic cancer cells were investigated in this study.MTT assays indicated that CAEO inhibited the proliferat...The effects of essential oil from Carpesium abrotanoides L.(CAEO)on the proliferation and apoptosis of human hepatic cancer cells were investigated in this study.MTT assays indicated that CAEO inhibited the proliferation of HCC cells with the IC50 values ranging from 41.28±3.06 to 130.36±20.79μg/mL.Moreover,many obviously nuclear morphological changes of apoptotic cells in CAEO-treated HepG2 cells were detected by Hoechst 33258staining and fluorescence microscopy.Flow cytometry was used to detect cell apoptosis and cell cycle,and noticeable findings showed that CAEO arrested cell-cycle at S and G2/M phases.The decreased Bcl-2/Bax protein ratio and the activation of caspase-3,caspase-9 were also detected by Western blotting.All results suggested that CAEO is a potential agent to fight against liver cancer,and the mitochondria-mediated intrinsic apoptotic pathway could be involved in CAEO-mediated apoptosis of human liver carcinoma cells.展开更多
Two immunomodulatory polysaccharides(Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cell...Two immunomodulatory polysaccharides(Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cells. Both the level of released nitric oxide(NO) and expression of inducible nitric oxide synthase(iNOS) m RNA were significantly enhanced in the RAW264.7 macrophages cells treated by Vp2a-Ⅱ and Vp3. Vp2a-Ⅱ(100–800 μg/m L) and Vp3(400 μg/mL) could significantly increase the phagocytic activity of RAW264.7 cells and the secretion and m RNA expression of TNF-α and IL-6 in a concentrationdependent manner through affecting mitogen-activated protein kinase(MAPK) activity and nuclear factor κB(NF-κB) nuclear translocation. Vp2a-Ⅱ might activate the MAPK signaling pathways and induce the nuclear translocation of NF-κB p65, whilst Vp3 likely activated the NF-κB and MAPK signaling pathways without influencing the p38 MAPK route.展开更多
Foxtail millet(Setaria italica(L.)P.Beauv)is a naturally stress tolerant crop.Compared to other gramineous crops,it has relatively stronger drought and lower nutrition stress tolerance traits.To date,the scope of ...Foxtail millet(Setaria italica(L.)P.Beauv)is a naturally stress tolerant crop.Compared to other gramineous crops,it has relatively stronger drought and lower nutrition stress tolerance traits.To date,the scope of functional genomics research in foxtail millet(S.italic L.)has been quite limited.NAC(NAM,ATAF1/2 and CUC2)-like transcription factors are known to be involved in various biological processes,including abiotic stress responses.In our previous foxtail millet(S.italic L.)RNA seq analysis,we found that the expression of a NAC-like transcription factor,SiNAC110,could be induced by drought stress;additionally,other references have reported that SiNAC110 expression could be induced by abiotic stress.So,we here selected SiNAC110 for further characterization and functional analysis.First,the predicted SiNAC110 protein encoded indicated SiNAC110 has a conserved NAM(no apical meristem)domain between the 11–139 amino acid positions.Phylogenetic analysis then indicated that SiNAC110 belongs to subfamily III of the NAC gene family.Subcellular localization analysis revealed that the SiNAC110-GFP fusion protein was localized to the nucleus in Arabidopsis protoplasts.Gene expression profiling analysis indicated that expression of SiNAC110 was induced by dehydration,high salinity and other abiotic stresses.Gene functional analysis using SiNAC110 overexpressed Arabidopsis plants indicated that,under drought and high salt stress conditions,the seed germination rate,root length,root surface area,fresh weight,and dry weight of the SiNAC110 overexpressed lines were significantly higher than the wild type(WT),suggesting that the SiNAC110 overexpressed lines had enhanced tolerance to drought and high salt stresses.However,overexpression of SiN AC110 did not affect the sensitivity of SiNAC110 overexpressed lines to abscisic acid(ABA)treatment.Expression analysis of genes involved in proline synthesis,Na+/K+transport,drought responses,and aqueous transport proteins were higher in the SiNAC110overexpressed lines than in the WT,whereas expression of ABA-dependent pathway genes did not change.These results indicated that overexpression of SiNAC110 conferred tolerance to drought and high salt stresses,likely through influencing the regulation of proline biosynthesis,ion homeostasis and osmotic balance.Therefore,SiNAC110 appears to function in the ABA-independent abiotic stress response pathway in plants.展开更多
This study was designed to investigate the anti-inflammatory effects of volatile oil of Platycladus orientalis(L.)Franco leaves(VOPF)and the underlying molecular mechanisms by using the non-infectious inflammation rat...This study was designed to investigate the anti-inflammatory effects of volatile oil of Platycladus orientalis(L.)Franco leaves(VOPF)and the underlying molecular mechanisms by using the non-infectious inflammation rat models and infectious inflammation mouse models.Ear swelling and intraperitoneal capillary permeability in mice,and carrageenan-induced toe swelling and cotton ball-induced granuloma in rats were used to reveal anti-inflammatory effects of VOPF.Moreover,the lipopolysaccharide(LPS)-induced mouse model of acute lung injury was used to explore the anti-inflammatory mechanism of VOPF.The results showed that VOPF could significantly inhibit auricular swelling,intraperitoneal capillary permeability in mice,and reduce granuloma swelling and paw swelling in rats.Furthermore,it significantly alleviated the pathological damage of the lung tissue.In addition,VOPF could reduce the contents of IL-1β and TNF-αand increase the content of IL-10 in the serum.It had little effect on the expression of p65 but reduced the phosphorylation level of p65 and IκB in NF-κB pathway.In conclusion,VOPF has anti-inflammatory effects and the mechanisms involve the down-regulation of the phosphorylation levels of p65 and IκB and blockage of the NF-κB signaling pathway.展开更多
For better understanding the chemical or biological information of ZNF191 (243-368), we expressed the fusion protein of GST and ZNF191 (243-368), and used it to obtain the binding DNA sequence of this zinc finger ...For better understanding the chemical or biological information of ZNF191 (243-368), we expressed the fusion protein of GST and ZNF191 (243-368), and used it to obtain the binding DNA sequence of this zinc finger protein. But in the process of expression and purification, we found this fusion protein slowly degradated. For resolving this problem, we simultaneously added charged amino acids L-Arg and L-Glu to the solution of fusion protein, and demonstrated that this method can dramatically increase the stability of this fusion protein. This method can make the fusion protein suitable for the continuous works, especially for situations where high protein concentration and long-term stability without precipitate and degradation of protein are required.展开更多
Increasing the planting density is one way to enhance grain production in maize.However,high planting density brings about growth and developmental defects such as barrenness,which is the major factor limiting grain y...Increasing the planting density is one way to enhance grain production in maize.However,high planting density brings about growth and developmental defects such as barrenness,which is the major factor limiting grain yield.In this study,the barrenness was characterized in an association panel comprising 280 inbred lines under normal(67500 plants ha–1,ND)and high(120000 plants ha–1,HD)planting densities in 2017 and 2018.The population was genotyped using 776254 single nucleotide polymorphism(SNP)markers with criteria of minor allele frequency>5%and<20%missing data.A genome-wide association study(GWAS)was conducted for barrenness under ND and HD,as well as the barrenness ratio(HD/ND),by applying a Mixed Linear Model that controls both population structure and relative kinship(Q+K).In total,20 SNPs located in nine genes were significantly(P<6.44×10–8)associated with barrenness under the different planting densities.Among them,seven SNPs for barrenness at ND and HD were located in two genes,four of which were common under both ND and HD.In addition,13 SNPs for the barrenness ratio were located in seven genes.A complementary pathway analysis indicated that the metabolic pathways of amino acids,such as glutamate and arginine,and the mitogen-activated protein kinase(MAPK)signaling pathway might play important roles in tolerance to high planting density.These results provide insights into the genetic basis of high planting density tolerance and will facilitate high yield maize breeding.展开更多
基金The Fund of National Cancer Center Research and Development(26-A-4),The Grants-in-Aid for Scientific Research(Grant Nos.15K10451,16K10866 and 16K20063)from Japan Society for the Promotion of Science.
文摘An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(TCF/LEF)transcription factor family,interacts with the Wnt signaling pathway regulator β-catenin and acts as a DNA-specific binding protein.This study sought to elucidate the impact of the interaction between miR 3293p and TCF7L1 on.the growth and apoptosis of OS and analyze the regulatory expression relationship between miRNA and mRNA in osteosarcoma cells using a variety of approaches.MiR329-3p was significantly downregulated,while TCF7L1 was considerably up-regulated in all examined OS cell lines.Additionally,a clinical comparison study was performed using the TCGA database.Subsequently,the regulatory relationship between miR-329-3p and TCF7L1 on the proliferation and apoptosis of OS cells was verified through in vitro and in vivo experiments.When miR 329-3p was transfected into the OS cell line,the expression of TCF7L1 decreased,the proliferation of OS cells was inhibited,the cytoskeleton disintegrated,and the nucleus condensed to fom apoptotic bodies.The expression of proteins that indicate apoptosis increased simultaneously.The cell cycle was arrested in the G0/G1 phase,and the G1/S transition was blocked.The introduction of miR 3293p also inhibited downstream Cyclin D1 of the Wnt pathway.Xenograf experiments indicated that the overexpression of miR-329-3p signi ficanly inhibited the growth of OS xenografts in nude mice,and the expression of TCF7L1 and C-Myc in tumor tssues decreased.MiR 329-3p was significantly reduced in OS cells and played a suppressive role in tumorigenesis and proliferation by targeting TCF7L1 both in vitro and in vivo.Osteosarcoma cell cycle arrest and pathway inhibition were observed upon the regulation of TCF7LI by miR 3293p.Summarizing these results,it can be inferred that miR.3293p exerts anticancer efects in osteosarcoma by inhibiting TCF7L1.
基金This work was supported by the Hunan Education Department Project(NO.20A390)National Innovation and Entrepreneurship Training Program(S202010548007).
文摘Background:Melanoma is a deadly skin tumor resulting from the malignant transformation of melanocytes.It is highly malignant and invasive,with the highest mortality rate among skin cancers.Acalypha australis L.(AAL),a plant with dual medicinal and culinary purposes,is commonly regarded as an edible wild vegetable in southern China.Additionally,AAL has a long history of medicinal use in China,often employed for its hemostatic,anti-diarrheal,and anti-inflammatory properties.Modern pharmacology has demonstrated that AAL possesses functions such as weight loss,antimicrobial activity,antiviral effects,and treatment for ulcerative colitis.However,there is currently no research available regarding its effectiveness and mechanisms of action on melanoma.Methods:In this investigation,we used methyl thiazolyl tetrazolium assay to detect cell viability,transwell assay to detect cell migration and invasion ability,and Western blot assay to detect relevant signaling pathways.Results:The present study reveals that 2 mg/mL AAL effectively suppresses the metastasis of B16 cells,while simultaneously triggering the expression of key apoptosis-related proteins,including Bcl-2,Bax,and cleaved caspased 3.Subsequent investigations demonstrate that AAL exerts this inhibitory effect via the PI3K/AKT signal transduction pathway,as evidenced by the observed deficits in Ras,AKT,p-AKT,and PI3K expression levels.Conclusion:These findings indicated that AAL could be a valuable therapeutic option for reducing the metastatic potential of B16 melanoma cells.
基金the Natural Science Foundation of Hubei Province of China(No.2017CFB517)the Talent Introduction Project of Hangzhou Medical College,Zhejiang Province,China (No.2015B08)+2 种基金Open Project Fund of Hubei Province Key Laboratory of Occupational Hazard Identification and Control(No.OHIC2017G03)the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities(CZP17060)National Natural Science Foundation of China(No.81573239,No.31671092 and No.81773264).
文摘The effects of essential oil from Carpesium abrotanoides L.(CAEO)on the proliferation and apoptosis of human hepatic cancer cells were investigated in this study.MTT assays indicated that CAEO inhibited the proliferation of HCC cells with the IC50 values ranging from 41.28±3.06 to 130.36±20.79μg/mL.Moreover,many obviously nuclear morphological changes of apoptotic cells in CAEO-treated HepG2 cells were detected by Hoechst 33258staining and fluorescence microscopy.Flow cytometry was used to detect cell apoptosis and cell cycle,and noticeable findings showed that CAEO arrested cell-cycle at S and G2/M phases.The decreased Bcl-2/Bax protein ratio and the activation of caspase-3,caspase-9 were also detected by Western blotting.All results suggested that CAEO is a potential agent to fight against liver cancer,and the mitochondria-mediated intrinsic apoptotic pathway could be involved in CAEO-mediated apoptosis of human liver carcinoma cells.
基金supported by Research on Precision Nutrition and Health Food,Department of Science and Technology of Henan Province(CXJD2021006)。
文摘Two immunomodulatory polysaccharides(Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cells. Both the level of released nitric oxide(NO) and expression of inducible nitric oxide synthase(iNOS) m RNA were significantly enhanced in the RAW264.7 macrophages cells treated by Vp2a-Ⅱ and Vp3. Vp2a-Ⅱ(100–800 μg/m L) and Vp3(400 μg/mL) could significantly increase the phagocytic activity of RAW264.7 cells and the secretion and m RNA expression of TNF-α and IL-6 in a concentrationdependent manner through affecting mitogen-activated protein kinase(MAPK) activity and nuclear factor κB(NF-κB) nuclear translocation. Vp2a-Ⅱ might activate the MAPK signaling pathways and induce the nuclear translocation of NF-κB p65, whilst Vp3 likely activated the NF-κB and MAPK signaling pathways without influencing the p38 MAPK route.
基金funded by the National Key Project for Research on Transgenic Biology, China (2016ZX08002-002)the Innovation Project of Chinese Academy of Agricultural Sciences
文摘Foxtail millet(Setaria italica(L.)P.Beauv)is a naturally stress tolerant crop.Compared to other gramineous crops,it has relatively stronger drought and lower nutrition stress tolerance traits.To date,the scope of functional genomics research in foxtail millet(S.italic L.)has been quite limited.NAC(NAM,ATAF1/2 and CUC2)-like transcription factors are known to be involved in various biological processes,including abiotic stress responses.In our previous foxtail millet(S.italic L.)RNA seq analysis,we found that the expression of a NAC-like transcription factor,SiNAC110,could be induced by drought stress;additionally,other references have reported that SiNAC110 expression could be induced by abiotic stress.So,we here selected SiNAC110 for further characterization and functional analysis.First,the predicted SiNAC110 protein encoded indicated SiNAC110 has a conserved NAM(no apical meristem)domain between the 11–139 amino acid positions.Phylogenetic analysis then indicated that SiNAC110 belongs to subfamily III of the NAC gene family.Subcellular localization analysis revealed that the SiNAC110-GFP fusion protein was localized to the nucleus in Arabidopsis protoplasts.Gene expression profiling analysis indicated that expression of SiNAC110 was induced by dehydration,high salinity and other abiotic stresses.Gene functional analysis using SiNAC110 overexpressed Arabidopsis plants indicated that,under drought and high salt stress conditions,the seed germination rate,root length,root surface area,fresh weight,and dry weight of the SiNAC110 overexpressed lines were significantly higher than the wild type(WT),suggesting that the SiNAC110 overexpressed lines had enhanced tolerance to drought and high salt stresses.However,overexpression of SiN AC110 did not affect the sensitivity of SiNAC110 overexpressed lines to abscisic acid(ABA)treatment.Expression analysis of genes involved in proline synthesis,Na+/K+transport,drought responses,and aqueous transport proteins were higher in the SiNAC110overexpressed lines than in the WT,whereas expression of ABA-dependent pathway genes did not change.These results indicated that overexpression of SiNAC110 conferred tolerance to drought and high salt stresses,likely through influencing the regulation of proline biosynthesis,ion homeostasis and osmotic balance.Therefore,SiNAC110 appears to function in the ABA-independent abiotic stress response pathway in plants.
基金the National Natural Science Foundation of China(No.31200264)the Fundamental Research Funds for Central Universities(South-Central University for NationalitiesNo.CZY19028,No.CZY20048).
文摘This study was designed to investigate the anti-inflammatory effects of volatile oil of Platycladus orientalis(L.)Franco leaves(VOPF)and the underlying molecular mechanisms by using the non-infectious inflammation rat models and infectious inflammation mouse models.Ear swelling and intraperitoneal capillary permeability in mice,and carrageenan-induced toe swelling and cotton ball-induced granuloma in rats were used to reveal anti-inflammatory effects of VOPF.Moreover,the lipopolysaccharide(LPS)-induced mouse model of acute lung injury was used to explore the anti-inflammatory mechanism of VOPF.The results showed that VOPF could significantly inhibit auricular swelling,intraperitoneal capillary permeability in mice,and reduce granuloma swelling and paw swelling in rats.Furthermore,it significantly alleviated the pathological damage of the lung tissue.In addition,VOPF could reduce the contents of IL-1β and TNF-αand increase the content of IL-10 in the serum.It had little effect on the expression of p65 but reduced the phosphorylation level of p65 and IκB in NF-κB pathway.In conclusion,VOPF has anti-inflammatory effects and the mechanisms involve the down-regulation of the phosphorylation levels of p65 and IκB and blockage of the NF-κB signaling pathway.
文摘For better understanding the chemical or biological information of ZNF191 (243-368), we expressed the fusion protein of GST and ZNF191 (243-368), and used it to obtain the binding DNA sequence of this zinc finger protein. But in the process of expression and purification, we found this fusion protein slowly degradated. For resolving this problem, we simultaneously added charged amino acids L-Arg and L-Glu to the solution of fusion protein, and demonstrated that this method can dramatically increase the stability of this fusion protein. This method can make the fusion protein suitable for the continuous works, especially for situations where high protein concentration and long-term stability without precipitate and degradation of protein are required.
基金the 2020 Research Program of Sanya Yazhou Bay Science and Technology City,China(SKJC-2020-02-005)the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences(CAAS-ZDRW202004 and CAAS-ZDRW202109).
文摘Increasing the planting density is one way to enhance grain production in maize.However,high planting density brings about growth and developmental defects such as barrenness,which is the major factor limiting grain yield.In this study,the barrenness was characterized in an association panel comprising 280 inbred lines under normal(67500 plants ha–1,ND)and high(120000 plants ha–1,HD)planting densities in 2017 and 2018.The population was genotyped using 776254 single nucleotide polymorphism(SNP)markers with criteria of minor allele frequency>5%and<20%missing data.A genome-wide association study(GWAS)was conducted for barrenness under ND and HD,as well as the barrenness ratio(HD/ND),by applying a Mixed Linear Model that controls both population structure and relative kinship(Q+K).In total,20 SNPs located in nine genes were significantly(P<6.44×10–8)associated with barrenness under the different planting densities.Among them,seven SNPs for barrenness at ND and HD were located in two genes,four of which were common under both ND and HD.In addition,13 SNPs for the barrenness ratio were located in seven genes.A complementary pathway analysis indicated that the metabolic pathways of amino acids,such as glutamate and arginine,and the mitogen-activated protein kinase(MAPK)signaling pathway might play important roles in tolerance to high planting density.These results provide insights into the genetic basis of high planting density tolerance and will facilitate high yield maize breeding.