期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于轻量级神经网络的目标检测研究 被引量:2
1
作者 黄志强 李军 张世义 《计算机工程与科学》 CSCD 北大核心 2022年第7期1265-1272,共8页
由于以CSPDarknet53为主干的YOLOv4神经网络参数量巨大,将其移植至手机等小型设备上时会降低其检测精度和速度,为了提高检测速度同时将检测精度控制在合理范围内,提出将原有的53层神经网络改为15层,并对其中的聚类算法进行优化,引入K-me... 由于以CSPDarknet53为主干的YOLOv4神经网络参数量巨大,将其移植至手机等小型设备上时会降低其检测精度和速度,为了提高检测速度同时将检测精度控制在合理范围内,提出将原有的53层神经网络改为15层,并对其中的聚类算法进行优化,引入K-means++聚类算法对数据集进行分析,生成满足检测条件的Anchor Box;使用在负区间带有一定斜率的LeakyReLU激活函数代替存在梯度消失问题的Sigmoid激活函数,从而增强浅层网络的学习能力;同时考虑到Bounding Box与Anchor Box之间的中心距和宽高比具有一定的相关性,提出在原有损失函数的基础上增加相应的惩罚项生成L_(CIoU)损失函数,使损失函数在反向传播时梯度下降的方向性更好。实验结果表明,改进后的CSPDarknet15神经网络在VOC2007数据集上检测的平均精度达到83.94%,检测一幅图像的时间为3625 ms,与CSPDarknet53神经网络相比,检测速度提高了54.43%,能满足小型设备实时检测的速度和精度要求。 展开更多
关键词 YOlOv4神经网络 K-means%PlUS%%PlUS%聚类算法 leakyRelU激活函数 l ciou损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部