期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Identifying influential spreaders in social networks: A two-stage quantum-behaved particle swarm optimization with Lévy flight
1
作者 卢鹏丽 揽继茂 +3 位作者 唐建新 张莉 宋仕辉 朱虹羽 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期743-754,共12页
The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ... The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms. 展开更多
关键词 social networks influence maximization metaheuristic optimization quantum-behaved particle swarm optimization lévy flight
下载PDF
Enhanced Multi-Objective Grey Wolf Optimizer with Lévy Flight and Mutation Operators for Feature Selection
2
作者 Qasem Al-Tashi Tareq M Shami +9 位作者 Said Jadid Abdulkadir Emelia Akashah Patah Akhir Ayed Alwadain Hitham Alhussain Alawi Alqushaibi Helmi MD Rais Amgad Muneer Maliazurina B.Saad Jia Wu Seyedali Mirjalili 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1937-1966,共30页
The process of selecting features or reducing dimensionality can be viewed as a multi-objective minimization problem in which both the number of features and error rate must be minimized.While it is a multi-objective ... The process of selecting features or reducing dimensionality can be viewed as a multi-objective minimization problem in which both the number of features and error rate must be minimized.While it is a multi-objective problem,current methods tend to treat feature selection as a single-objective optimization task.This paper presents enhanced multi-objective grey wolf optimizer with Lévy flight and mutation phase(LMuMOGWO)for tackling feature selection problems.The proposed approach integrates two effective operators into the existing Multi-objective Grey Wolf optimizer(MOGWO):a Lévy flight and a mutation operator.The Lévy flight,a type of random walk with jump size determined by the Lévy distribution,enhances the global search capability of MOGWO,with the objective of maximizing classification accuracy while minimizing the number of selected features.The mutation operator is integrated to add more informative features that can assist in enhancing classification accuracy.As feature selection is a binary problem,the continuous search space is converted into a binary space using the sigmoid function.To evaluate the classification performance of the selected feature subset,the proposed approach employs a wrapper-based Artificial Neural Network(ANN).The effectiveness of the LMuMOGWO is validated on 12 conventional UCI benchmark datasets and compared with two existing variants of MOGWO,BMOGWO-S(based sigmoid),BMOGWO-V(based tanh)as well as Non-dominated Sorting Genetic Algorithm II(NSGA-II)and Multi-objective Particle Swarm Optimization(BMOPSO).The results demonstrate that the proposed LMuMOGWO approach is capable of successfully evolving and improving a set of randomly generated solutions for a given optimization problem.Moreover,the proposed approach outperforms existing approaches in most cases in terms of classification error rate,feature reduction,and computational cost. 展开更多
关键词 Feature selection multi-objective optimization grey wolf optimizer lévy flight MUTATION classification
下载PDF
基于LF-ATSO算法在光伏系统MPPT中的研究
3
作者 李嘉轩 于惠钧 +1 位作者 马凡烁 刘紫英 《现代电子技术》 北大核心 2024年第21期149-155,共7页
在复杂遮荫工况下,传统MPPT策略在面对多峰值现象时易陷入局部最大功率点(LMPP),而基于元启发式算法的最大功率点跟踪策略也存在寻优精度不高、追踪时间慢等问题。为解决上述问题,文中构建Lévy飞行-自适应金枪鱼群算法(LF-ATSO)。... 在复杂遮荫工况下,传统MPPT策略在面对多峰值现象时易陷入局部最大功率点(LMPP),而基于元启发式算法的最大功率点跟踪策略也存在寻优精度不高、追踪时间慢等问题。为解决上述问题,文中构建Lévy飞行-自适应金枪鱼群算法(LF-ATSO)。首先,采用基于Circle混沌映射的反向学习策略合理分配初始化种群以提高种群遍历性;其次,改进参数a用以调整最优个体和前一个体的比重,提高收敛速度;然后,嵌入Lévy flight策略提高算法全局搜索能力,帮助其跳出局部最优;最后,加入算法重启机制以应对复杂变化工况。将改进后的TSO算法与未改进TSO算法、PSO算法、改进GWO算法进行仿真对比,实验结果表明,改进后的TSO算法在静态、动态复杂遮荫工况下均能够更快、更精准地追踪到全局最大功率点(GMPP)。 展开更多
关键词 光伏系统 最大功率点跟踪 局部遮荫 金枪鱼群算法 lévy flight策略 Circle混沌映射
下载PDF
Control allocation for a class of morphing aircraft with integer constraints based on Lévy flight 被引量:3
4
作者 LU Yao SUN You +1 位作者 LIU Xiaodong GAO Bo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期826-840,共15页
Aiming at tracking control of a class of innovative control effector(ICE) aircraft with distributed arrays of actuators, this paper proposes a control allocation scheme based on the Lévy flight.Different from the... Aiming at tracking control of a class of innovative control effector(ICE) aircraft with distributed arrays of actuators, this paper proposes a control allocation scheme based on the Lévy flight.Different from the conventional aircraft control allocation problem,the particular characteristic of actuators makes the actuator control command totally subject to integer constraints. In order to tackle this problem, first, the control allocation problem is described as an integer programming problem with two desired objectives. Then considering the requirement of real-time, a metaheuristic algorithm based on the Lévy flight is introduced to tackling this problem. In order to improve the searching efficiency, several targeted and heuristic strategies including variable step length and inherited population initialization according to feedback and so on are designed. Moreover, to prevent the incertitude of the metaheuristic algorithm and ensure the flight stability, a guaranteed control strategy is designed. Finally, a time-varying simulation model is introduced to verifying the effectiveness of the proposed scheme. The contrastive simulation results indicate that the proposed scheme achieves superior tracking performance with appropriate actuator dynamics and computational time, and the improvements for efficiency are active and the parameter settings are reasonable. 展开更多
关键词 flight control control allocation optimization lévy flight tracking control
下载PDF
基于Lévy Flight的混合GA在柔性作业车间调度问题中的性能分析
5
作者 张正敏 管在林 岳磊 《工业工程》 北大核心 2021年第4期83-92,共10页
近年来,柔性作业车间调度问题(FJSP)由于其NP难特性与在制造系统中的广泛应用被大量关注。为提高该类问题求解效率,本文在标准Lévy flight的基础上提出了一种新的离散Lévy flight搜索策略,并将该策略与遗传算法框架结合,形成... 近年来,柔性作业车间调度问题(FJSP)由于其NP难特性与在制造系统中的广泛应用被大量关注。为提高该类问题求解效率,本文在标准Lévy flight的基础上提出了一种新的离散Lévy flight搜索策略,并将该策略与遗传算法框架结合,形成一种离散Lévy flight策略的混合遗传算法。该混合算法通过使用离散Lévy flight搜索策略对每代精英种群进行变步长搜索,提高了算法的局部搜索能力,增强了种群多样性。本文通过将CS、GA和TLBO等经典算法作为对比算法,对不同规模的54个FJSP算例进行实验,证明了所提出的算法具备更好的收敛效果与稳定性,适合于求解大规模FJSP。 展开更多
关键词 柔性作业车间调度问题(FJSP) lévy flight搜索策略 混合遗传算法
下载PDF
Salp Swarm Incorporated Adaptive Dwarf Mongoose Optimizer with Lévy Flight and Gbest-Guided Strategy
6
作者 Gang Hu Yuxuan Guo Guanglei Sheng 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期2110-2144,共35页
In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLS... In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLSDMO.Firstly,we propose an improved solution search equation that utilizes the Gbest-guided strategy with different parameters to achieve a trade-off between exploration and exploitation(EE).Secondly,the Lévy flight is introduced to increase the diversity of population distribution and avoid the algorithm getting stuck in a local optimum.In addition,in order to address the problem of low convergence efficiency of DMO,this study uses the strong nonlinear convergence factor Sigmaid function as the moving step size parameter of the mongoose during collective activities,and combines the strategy of the salp swarm leader with the mongoose for cooperative optimization,which enhances the search efficiency of agents and accelerating the convergence of the algorithm to the global optimal solution(Gbest).Subsequently,the superiority of GLSDMO is verified on CEC2017 and CEC2019,and the optimization effect of GLSDMO is analyzed in detail.The results show that GLSDMO is significantly superior to the compared algorithms in solution quality,robustness and global convergence rate on most test functions.Finally,the optimization performance of GLSDMO is verified on three classic engineering examples and one truss topology optimization example.The simulation results show that GLSDMO achieves optimal costs on these real-world engineering problems. 展开更多
关键词 Dwarf mongoose optimization algorithm Gbest-guided lévy flight Adaptive parameter Salp swarm algorithm Engineering optimization Truss topological optimization
原文传递
小数据集下基于DRKDE-ICSO的BN结构学习
7
作者 陈海洋 刘静 +1 位作者 刘喜庆 张静 《空军工程大学学报》 CSCD 北大核心 2024年第2期100-109,共10页
为了解决在小数据集条件下进行数据拓展时产生数据高度相似的问题,提出了基于降维核密度估计的小数据集拓展方法,从而得到较为准确的拓展数据。另外,针对鸡群优化算法求解效率低下和收敛性不足的问题,提出改进的鸡群优化算法进行结构学... 为了解决在小数据集条件下进行数据拓展时产生数据高度相似的问题,提出了基于降维核密度估计的小数据集拓展方法,从而得到较为准确的拓展数据。另外,针对鸡群优化算法求解效率低下和收敛性不足的问题,提出改进的鸡群优化算法进行结构学习:在雄鸡的位置更新公式中引入莱维飞行,使鸡群算法具有更强的跳跃能力;采用指数递减的动态调节惯性权重,以加速局部搜索和提高收敛速度;通过引入最优个体引导策略,增加找到较优位置的概率。实验结果表明,所提算法在小数据集条件下,BIC评分、准确率及汉明距离等指标均优于MCMC算法、BPSO算法、CSO算法、ADLCSO-I算法和SA-ICSO算法。 展开更多
关键词 鸡群算法 莱维飞行 降维核密度 结构学习
下载PDF
基于改进鲸鱼优化算法的工业CT图像增强方法
8
作者 王紫荆 刘卫星 杨爱民 《电子测量技术》 北大核心 2024年第11期160-168,共9页
针对工业CT图像中存在着的前景遮挡,背景噪声干扰和对比度低等问题,提出了一种基于改进鲸鱼优化算法的图像增强方法。首先应用混沌映射对鲸鱼优化算法的种群进行初始化,通过让鲸鱼种群分布的更加广泛来提升全局搜索能力。然后使用莱维... 针对工业CT图像中存在着的前景遮挡,背景噪声干扰和对比度低等问题,提出了一种基于改进鲸鱼优化算法的图像增强方法。首先应用混沌映射对鲸鱼优化算法的种群进行初始化,通过让鲸鱼种群分布的更加广泛来提升全局搜索能力。然后使用莱维飞行对鲸鱼个体的位置进行更新,进一步提高算法的局部搜索能力。最后应用改进的鲸鱼优化方法来寻找CLAHE的最佳参数,实现对图像的自适应最优增强。实验结果显示,相比于几种流行的图像增强算法,本文提出的方法能够更好的对工业CT图像进行增强,能够显著提升图像质量,并保留更多的细节信息。 展开更多
关键词 鲸鱼优化算法 图像增强 混沌映射 莱维飞行策略 ClAHE算法
下载PDF
瞬变电磁数据L-PSO反演方法 被引量:5
9
作者 王书明 底青云 +3 位作者 夏彤 任子乾 宋江涛 邹贵安 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2022年第4期1482-1493,共12页
本文针对粒子群优化算法(PSO)搜索步长短的问题,提出将Lévy flight搜索策略引入其中.利用Lévy flight兼具短距离搜索与偶尔长距离游走的特点,在不降低PSO算法收敛效率的情况下赋予其大步长游走能力,提高了PSO算法搜索全局最... 本文针对粒子群优化算法(PSO)搜索步长短的问题,提出将Lévy flight搜索策略引入其中.利用Lévy flight兼具短距离搜索与偶尔长距离游走的特点,在不降低PSO算法收敛效率的情况下赋予其大步长游走能力,提高了PSO算法搜索全局最优的能力,极大增加了PSO算法飞出局部最优的概率.最后本文将L-PSO算法应用于实际资料的反演中,结果表明L-PSO算法适用于瞬变电磁法的一维反演. 展开更多
关键词 PSO算法 lévy flight 瞬变电磁反演
下载PDF
An improved estimation of distribution algorithm for multi-compartment electric vehicle routing problem 被引量:5
10
作者 SHEN Yindong PENG Liwen LI Jingpeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期365-379,共15页
The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendl... The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles. 展开更多
关键词 multi-compartment vehicle routing problem electric vehicle routing problem(EVRP) soft time window multiple charging type estimation of distribution algorithm(EDA) lévy flight
下载PDF
Differential Evolution-Boosted Sine Cosine Golden Eagle Optimizer with Lévy Flight 被引量:1
11
作者 Gang Hu Liuxin Chen +1 位作者 Xupeng Wang Guo Wei 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第6期1850-1885,共36页
Golden eagle optimizer(GEO)is a recently introduced nature-inspired metaheuristic algorithm,which simulates the spiral hunting behavior of golden eagles in nature.Regrettably,the GEO suffers from the challenges of low... Golden eagle optimizer(GEO)is a recently introduced nature-inspired metaheuristic algorithm,which simulates the spiral hunting behavior of golden eagles in nature.Regrettably,the GEO suffers from the challenges of low diversity,slow iteration speed,and stagnation in local optimization when dealing with complicated optimization problems.To ameliorate these deficiencies,an improved hybrid GEO called IGEO,combined with Lévy flight,sine cosine algorithm and differential evolution(DE)strategy,is developed in this paper.The Lévy flight strategy is introduced into the initial stage to increase the diversity of the golden eagle population and make the initial population more abundant;meanwhile,the sine-cosine function can enhance the exploration ability of GEO and decrease the possibility of GEO falling into the local optima.Furthermore,the DE strategy is used in the exploration and exploitation stage to improve accuracy and convergence speed of GEO.Finally,the superiority of the presented IGEO are comprehensively verified by comparing GEO and several state-of-the-art algorithms using(1)the CEC 2017 and CEC 2019 benchmark functions and(2)5 real-world engineering problems respectively.The comparison results demonstrate that the proposed IGEO is a powerful and attractive alternative for solving engineering optimization problems. 展开更多
关键词 Golden eagle optimizer lévy flight Sine cosine algorithm Differential evolution strategy Engineering design Bionic model
原文传递
Correlated Lvy flight in external force fields
12
作者 L Yan BAO JingDong 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第3期418-423,共6页
The correlated Levy flight is studied analytically in terms of the fractional Fokker-Planck equation and simulated numerically by using the Langevin equation, where the usual white Ltvy noise is generalized to an Orns... The correlated Levy flight is studied analytically in terms of the fractional Fokker-Planck equation and simulated numerically by using the Langevin equation, where the usual white Ltvy noise is generalized to an Ornstein-Uhlenbeck Levy process (OALP) with a correlation time τc. We analyze firstly the stable behavior of OULP. The probability density function of Ltvy flight particle driven by the OULP in a harmonic potential is exactly obtained, which is also a Ltvy-type one with Tc-dependence width; when the particle is bounded by a quartic potential, its stationary distribution has a bimodality shape and becomes noticeable with the increase of τc. 展开更多
关键词 l3vy flight OUlP fractional Fokker-Planck equation
原文传递
Enhanced Growth Optimizer and Its Application to Multispectral Image Fusion
13
作者 Jeng-Shyang Pan Wenda Li +2 位作者 Shu-Chuan Chu Xiao Sui Junzo Watada 《Computers, Materials & Continua》 SCIE EI 2024年第11期3033-3062,共30页
The growth optimizer(GO)is an innovative and robust metaheuristic optimization algorithm designed to simulate the learning and reflective processes experienced by individuals as they mature within the social environme... The growth optimizer(GO)is an innovative and robust metaheuristic optimization algorithm designed to simulate the learning and reflective processes experienced by individuals as they mature within the social environment.However,the original GO algorithm is constrained by two significant limitations:slow convergence and high mem-ory requirements.This restricts its application to large-scale and complex problems.To address these problems,this paper proposes an innovative enhanced growth optimizer(eGO).In contrast to conventional population-based optimization algorithms,the eGO algorithm utilizes a probabilistic model,designated as the virtual population,which is capable of accurately replicating the behavior of actual populations while simultaneously reducing memory consumption.Furthermore,this paper introduces the Lévy flight mechanism,which enhances the diversity and flexibility of the search process,thus further improving the algorithm’s global search capability and convergence speed.To verify the effectiveness of the eGO algorithm,a series of experiments were conducted using the CEC2014 and CEC2017 test sets.The results demonstrate that the eGO algorithm outperforms the original GO algorithm and other compact algorithms regarding memory usage and convergence speed,thus exhibiting powerful optimization capabilities.Finally,the eGO algorithm was applied to image fusion.Through a comparative analysis with the existing PSO and GO algorithms and other compact algorithms,the eGO algorithm demonstrates superior performance in image fusion. 展开更多
关键词 Growth optimizer probabilistic model lévy flight image fusion
下载PDF
变异蝙蝠算法求解折扣{0-1}背包问题 被引量:19
14
作者 吴聪聪 贺毅朝 +2 位作者 陈嶷瑛 刘雪静 才秀凤 《计算机应用》 CSCD 北大核心 2017年第5期1292-1299,共8页
针对确定性算法难于求解规模大、数据范围广的折扣{0-1}背包问题(D{0-1}KP),提出了基于蝙蝠算法的快速求解D{0-1}KP的变异蝙蝠算法(MDBBA)。首先,利用双重编码解决D{0-1}KP的编码问题;其次,将贪心修复与优化算法(GROA)应用于蝙蝠个体适... 针对确定性算法难于求解规模大、数据范围广的折扣{0-1}背包问题(D{0-1}KP),提出了基于蝙蝠算法的快速求解D{0-1}KP的变异蝙蝠算法(MDBBA)。首先,利用双重编码解决D{0-1}KP的编码问题;其次,将贪心修复与优化算法(GROA)应用于蝙蝠个体适应度计算中,使算法快速得到有效解;然后,选择使用差分演化(DE)的变异策略提高算法的全局寻优能力;最后,蝙蝠个体按一定概率进行Lévy飞行,增强算法探索能力和跳出局部极值的能力。对四类大规模实例的仿真计算表明:MDBBA非常适于求解大规模的D{0-1}KP,比第一遗传算法(FirEGA)和双重编码蝙蝠算法(DBBA)求得的最优值和平均值都更优,MDBBA收敛速度明显快于DBBA。 展开更多
关键词 折扣{0-1}背包问题 蝙蝠算法 差分演化 lévy飞行 贪心策略 非正常编码
下载PDF
求解带约束优化问题的混合式多策略萤火虫算法
15
作者 吕莉 潘宁康 +2 位作者 肖人彬 王晖 谭德坤 《控制与决策》 EI CSCD 北大核心 2024年第8期2551-2559,共9页
目前多目标优化算法主要针对如何处理多个目标之间的冲突,对于如何处理约束考虑较少,鉴于此,提出一种求解带约束优化问题的混合式多策略萤火虫算法(HMSFA-PC).首先,提出一种改进的动态罚函数策略对约束优化问题进行预处理,将其转换为非... 目前多目标优化算法主要针对如何处理多个目标之间的冲突,对于如何处理约束考虑较少,鉴于此,提出一种求解带约束优化问题的混合式多策略萤火虫算法(HMSFA-PC).首先,提出一种改进的动态罚函数策略对约束优化问题进行预处理,将其转换为非约束优化问题;其次,对萤火虫算法本身进行改进,采用Lévy flights搜索机制有效地增大搜索范围;接着,引入随机扩张因子改进算法吸引模型,使种群突破束缚,有效避免早熟收敛,提出自适应维度重组机制,根据不同迭代时期选择差异性较大的个体进行信息交互、相互学习.为检验算法处理无约束优化问题的性能,将其在基准测试函数上与部分典型算法进行比较;为检验算法处理约束优化问题的性能,将其在实际约束测试问题中与一些顶尖约束求解算法进行比较.结果表明,HMSFA-PC在处理无约束优化问题时具有收敛速度快、收敛精度高等优势,并且在动态罚函数的协作下求解实际约束优化问题时仍具有良好的优化性能. 展开更多
关键词 萤火虫算法 约束多目标优化 动态罚函数法 lévy flights 随机扩张因子 自适应维度重组
原文传递
Particle Filter and Its Application in the Integrated Train Speed Measurement 被引量:3
16
作者 ZHANG Liang BAO Qilian +3 位作者 CUI Ke JIANG Yaodong XU Haigui DU Yuding 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第1期130-136,共7页
Particle filter(PF) can solve the problem of state estimation under strong non-linear non-Gaussian noise condition with respect to traditional Kalman filter(KF) and those improved KFs such as extended KF(EKF) and unsc... Particle filter(PF) can solve the problem of state estimation under strong non-linear non-Gaussian noise condition with respect to traditional Kalman filter(KF) and those improved KFs such as extended KF(EKF) and unscented KF(UKF). However, problems such as particle depletion and particle degradation affect the performance of PF. Optimizing the particle set to high likelihood region with intelligent optimization algorithm results in a more reasonable distribution of the sampling particles and more accurate state estimation. In this paper, a novel bird swarm algorithm based PF(BSAPF) is presented. Firstly, different behavior models are established by emulating the predation, flight, vigilance and follower behavior of the birds. Then, the observation information is introduced into the optimization process of the proposal distribution with the design of fitness function. In order to prevent particles from getting premature(being stuck into local optimum) and increase the diversity of particles, Lévy flight is designed to increase the randomness of particle's movement. Finally,the proposed algorithm is applied to estimate the speed of the train under the condition that the measurement noise of the wheel sensor is non-Gaussian distribution. Simulation study and experimental results both show that BSAPF is more accurate and has more effective particle number as compared with PF and UKF, demonstrating the promising performance of the method. 展开更多
关键词 particle filter(PF) bird swarm algorithm fitness function lévy flight proposal distribution integrated train speed measurement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部