本文指出文[1]中的定理4.1证明中包含着错误,并且建立了相应的正确结果。设α_0/2+sum from n=1 to ∞ α_n cos nx是f∈L(0,π]的Fourier余弦级数,假如存在a>0和单调数列{l_n}∈SV(N)使得α_n/(n~αl_n)↘(n→∞),那么下面两断言是...本文指出文[1]中的定理4.1证明中包含着错误,并且建立了相应的正确结果。设α_0/2+sum from n=1 to ∞ α_n cos nx是f∈L(0,π]的Fourier余弦级数,假如存在a>0和单调数列{l_n}∈SV(N)使得α_n/(n~αl_n)↘(n→∞),那么下面两断言是等价的,(ⅰ) ‖S_n(f)-f‖_(L1)=0(1)(n→∞):(ⅱ)α_nlogn→0(n→∞)。展开更多
文摘本文指出文[1]中的定理4.1证明中包含着错误,并且建立了相应的正确结果。设α_0/2+sum from n=1 to ∞ α_n cos nx是f∈L(0,π]的Fourier余弦级数,假如存在a>0和单调数列{l_n}∈SV(N)使得α_n/(n~αl_n)↘(n→∞),那么下面两断言是等价的,(ⅰ) ‖S_n(f)-f‖_(L1)=0(1)(n→∞):(ⅱ)α_nlogn→0(n→∞)。