期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
球空间中子流形上L^p调和1-形式的消灭定理 被引量:2
1
作者 姚中伟 刘建成 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第4期82-87,共6页
设Mm(m≥3)是m+n维球空间S^m+n中的m维完备定向非紧子流形,考虑子流形Mm上的Lp(p≥2)调和1-形式的存在性问题.记Φ为子流形Mm的无迹张量,则Mm的全曲率定义为||Φ||L^m(M)=(∫M|Φ|^mdM)^1/m,其中dM表示Mm的体积元.首先,在子流形Mm的全... 设Mm(m≥3)是m+n维球空间S^m+n中的m维完备定向非紧子流形,考虑子流形Mm上的Lp(p≥2)调和1-形式的存在性问题.记Φ为子流形Mm的无迹张量,则Mm的全曲率定义为||Φ||L^m(M)=(∫M|Φ|^mdM)^1/m,其中dM表示Mm的体积元.首先,在子流形Mm的全曲率有正上界的假设条件下,特别地,该正上界的取值仅依赖于子流形Mm的维数m和p,使用Bochner公式及球空间中子流形Ricci曲率的下界估计和Sobolev不等式,并利用截断函数法和Lp条件,得到了子流形Mm上不存在非平凡的Lp调和1-形式,即Lp调和1-形式的消灭定理.其次,考虑逐点条件,假设子流形Mm的无迹张量Φ的最大模函数有正上界,该正上界的取值仅依赖于m,使用同样的方法,证明了Mm上不存在非平凡的Lp调和1-形式. 展开更多
关键词 L^p调和1-形式 消灭定理 全曲率 无迹张量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部