By using curvature estimates, we prove that a complete non-compact hypersurface M with constant mean curvature and finite L^n-norm curvature in R^1+1 must be minimal, so that M is a hyperplane if it is strongly stabl...By using curvature estimates, we prove that a complete non-compact hypersurface M with constant mean curvature and finite L^n-norm curvature in R^1+1 must be minimal, so that M is a hyperplane if it is strongly stable. This is a generalization of the result on stable complete minimal hypersurfaces of R^n+1. Moreover, complete strongly stable hypersurfaces with constant mean curvature and finite L^1-norm curvature in R^1+1 are considered.展开更多
在高光谱图像(HSI)恢复中,如何在模型中有效嵌入先验信息和正确建模噪声一直是研究的两个重点。边信息作为一种基于域的先验知识已经在许多方向取得了成功,然而在高光谱去噪领域仍未受到关注。为了将这种领域知识与高光谱恢复模型自然耦...在高光谱图像(HSI)恢复中,如何在模型中有效嵌入先验信息和正确建模噪声一直是研究的两个重点。边信息作为一种基于域的先验知识已经在许多方向取得了成功,然而在高光谱去噪领域仍未受到关注。为了将这种领域知识与高光谱恢复模型自然耦合,提出的方法采用双线性映射的方式将边信息链接到表示观测数据潜在低秩结构的底层矩阵,并使用E-3DTV(enhanced 3-D total variation)正则编码了HSI局部平滑先验。此外该方法使用L p范数进行噪声建模,进一步增强对腐败的鲁棒性。该方法在两个数据集、七种加噪方式下与五种竞争方法在三个数值指标上进行了比较,结果充分反映了提出方法对复杂噪声场景的有效性和鲁棒性。展开更多
基金Supported by the National Natural Science Foundation of China(11871452,12071052the Natural Science Foundation of Henan(202300410338)the Nanhu Scholar Program for Young Scholars of XYNU。
基金The first author is partially supported by the National Natural Science Foundation of China (No.10271106)The second author is partially supported by the 973-Grant of Mathematics in China and the Huo Y.-D. fund.
文摘By using curvature estimates, we prove that a complete non-compact hypersurface M with constant mean curvature and finite L^n-norm curvature in R^1+1 must be minimal, so that M is a hyperplane if it is strongly stable. This is a generalization of the result on stable complete minimal hypersurfaces of R^n+1. Moreover, complete strongly stable hypersurfaces with constant mean curvature and finite L^1-norm curvature in R^1+1 are considered.
文摘在高光谱图像(HSI)恢复中,如何在模型中有效嵌入先验信息和正确建模噪声一直是研究的两个重点。边信息作为一种基于域的先验知识已经在许多方向取得了成功,然而在高光谱去噪领域仍未受到关注。为了将这种领域知识与高光谱恢复模型自然耦合,提出的方法采用双线性映射的方式将边信息链接到表示观测数据潜在低秩结构的底层矩阵,并使用E-3DTV(enhanced 3-D total variation)正则编码了HSI局部平滑先验。此外该方法使用L p范数进行噪声建模,进一步增强对腐败的鲁棒性。该方法在两个数据集、七种加噪方式下与五种竞争方法在三个数值指标上进行了比较,结果充分反映了提出方法对复杂噪声场景的有效性和鲁棒性。