In this paper we report geochemical and Nd-Sr isotopic data for a late Archean gneissic granitic pluton (Hengling pluton), an early Paleoproterozoic complex (Xipan complex) and a late Paleoproterozoic granitic plu...In this paper we report geochemical and Nd-Sr isotopic data for a late Archean gneissic granitic pluton (Hengling pluton), an early Paleoproterozoic complex (Xipan complex) and a late Paleoproterozoic granitic pluton (Yunzhongshan granites) from the Liiliang-Wutai terrain, North China, to trace the source of these late Archean-Paleoproterozoic granitoids and, particularly, to understand the nature and mechanism of continental growth at that time. The Hengling granitic gneisses (ca. 2.51 Ga) are characterized by high Na2O and LILEs, TTG-like REE patterns (highly depleted HREE and minor Eu anomalies) and moderately depleted Nd-Sr isotopic compositions (εNd(t) =1.2-2.7, ISr=0.7015-0.7019), and were considered as being products of arc magmatism that was developed upon the North China craton. The Xipan complex (ca. 2.2 Ga) contain gabbroic diorite and monzonite, mostly being Na2O-rich, highly fractionated REE patterns and isotopically enriched (εNd(t) =-1.5 to -4.1, Isr=0.7038-0.706). The gabbroic diorites probably originated from melting of an enriched mantle source, but significantly contaminated by lower crustal material, and the monzonites probably represent a product of a mixture between the gabbroic dioritic magma and granitic melts of crustal origin. The Yunzhongshan post-collisional granitoids (ca. 1.8 Ga) are characterized by high-K affinity and highly-enriched and homogeneous Nd isotopic compositions (εNd(t)=-4.9 to -5.7), although they split into two groups in terms of REE patterns: one group showing elevated HREE (and Sc, Y and Zr) with significant negative Eu anomalies and the other showing highly depleted HREE and, to a lesser extent, mid-REE with negligible Eu anomalies. These granites are genetically related to a process of extensional collapse of a thickened orogen. They formed through magma mixing between mantle-derived basaltic magmas and crust-derived granitic melts, followed by significant fractionation of ferromagnesian phases (like hornblende and Cpx) and feldspar and accessory zircons. Some Yunzhongshan granites show very old Nd model ages (2.9-3.0 Ga), suggesting the existence of continental crust older than 2.7 Ga, which is supported by our zircon Hf isotopic data for these granites.展开更多
To unravel the geochemical heterogeneity and its origin in different terranes of North China,we conducted geochronological and geochemical analyses of the meta-mafic rocks from the Lüliang–Zhongtiao rift zone(Sh...To unravel the geochemical heterogeneity and its origin in different terranes of North China,we conducted geochronological and geochemical analyses of the meta-mafic rocks from the Lüliang–Zhongtiao rift zone(Shanxi Province).LA-ICP-MS zircon U–Pb dating yielded mostly End-Neoarchean to Proterozoic ages for the basement rocks(Sushui Complex:2516±26 Ma;Metamafic rocks:2494±31 Ma),Jiangxian Group(~2213 Ma),Zhongtiao Group(2077±29 Ma),Jiehekou Group(1998±23 Ma),and Lüliang Group(2152±52 Ma).Petrographic characteristics show that the meta-mafic rocks from the Neoarchean–Paleoproterozoic Zhongtiaoshan(Sushui Complex)have similar geochemical characteristics to the overlying Jiangxian and Zhongtiao Groups.The Paleoproterozoic Lüliang andYejishan Group meta-mafic rocks from Lüliangshan also have similar geochemical characteristics but are geochemically different from similar-age rocks from Zhongtiaoshan.This shows that the late-stage rocks have a geochemical inheritance from the early-stage rocks in the same region and that the geochemical heterogeneity of rocks from different areas was originated from the inherited heterogeneity of the magma source.展开更多
Presented in this paper are the newly obtained grain zircon U-Pb ages of volcanic rocks of the Luliang Group and associated Kuanping granitic migmatitic gneiss in Shanxi Province. The zircon U-Ph ages of bimodal volca...Presented in this paper are the newly obtained grain zircon U-Pb ages of volcanic rocks of the Luliang Group and associated Kuanping granitic migmatitic gneiss in Shanxi Province. The zircon U-Ph ages of bimodal volcanic rocks (basalt and rhyolite) of the Upper Luliang Group indicate that the rocks erupted at about 2100 Ma. So the Luliang Group was formed during the Early Proterozoic. In the area studied the second-stage metamorphism experienced by the Luliang Group is the dominant one which took place at about 1806 Ma, i. e., during the late Early Proterozoic.展开更多
The rhyolites in the upper Lüliang Group of Shanxi, China, are Paleoproterozoic weakly alkaline volcanic rocks. They are characterized by high SiO\-2, Na\-2O+K\-2O, Zr, Nb, Ga, Y and REE contents and large FeO\+*...The rhyolites in the upper Lüliang Group of Shanxi, China, are Paleoproterozoic weakly alkaline volcanic rocks. They are characterized by high SiO\-2, Na\-2O+K\-2O, Zr, Nb, Ga, Y and REE contents and large FeO\+*/MgO, Rb/Sr and Ga/Al ratios, and low CaO, Sr and Eu contents, and share much in common with the A type granitic rocks. They erupted in the rift setting at the continental margin. Chemical features and isotope data, as well as high Nd and low initial Sr ratios, suggest that the original granitic magma was derived from partial melting of Late Archean metamorphic rocks in the lower crust due to the influence of basaltic magma and hot fluid in response to rifting. The A type rhyolites were finally formed after the fractional crystallization of the dominant mineral feldspar.展开更多
基金This study is financially supported by the National Natural Science Foundation of China (No. 40420120135).
文摘In this paper we report geochemical and Nd-Sr isotopic data for a late Archean gneissic granitic pluton (Hengling pluton), an early Paleoproterozoic complex (Xipan complex) and a late Paleoproterozoic granitic pluton (Yunzhongshan granites) from the Liiliang-Wutai terrain, North China, to trace the source of these late Archean-Paleoproterozoic granitoids and, particularly, to understand the nature and mechanism of continental growth at that time. The Hengling granitic gneisses (ca. 2.51 Ga) are characterized by high Na2O and LILEs, TTG-like REE patterns (highly depleted HREE and minor Eu anomalies) and moderately depleted Nd-Sr isotopic compositions (εNd(t) =1.2-2.7, ISr=0.7015-0.7019), and were considered as being products of arc magmatism that was developed upon the North China craton. The Xipan complex (ca. 2.2 Ga) contain gabbroic diorite and monzonite, mostly being Na2O-rich, highly fractionated REE patterns and isotopically enriched (εNd(t) =-1.5 to -4.1, Isr=0.7038-0.706). The gabbroic diorites probably originated from melting of an enriched mantle source, but significantly contaminated by lower crustal material, and the monzonites probably represent a product of a mixture between the gabbroic dioritic magma and granitic melts of crustal origin. The Yunzhongshan post-collisional granitoids (ca. 1.8 Ga) are characterized by high-K affinity and highly-enriched and homogeneous Nd isotopic compositions (εNd(t)=-4.9 to -5.7), although they split into two groups in terms of REE patterns: one group showing elevated HREE (and Sc, Y and Zr) with significant negative Eu anomalies and the other showing highly depleted HREE and, to a lesser extent, mid-REE with negligible Eu anomalies. These granites are genetically related to a process of extensional collapse of a thickened orogen. They formed through magma mixing between mantle-derived basaltic magmas and crust-derived granitic melts, followed by significant fractionation of ferromagnesian phases (like hornblende and Cpx) and feldspar and accessory zircons. Some Yunzhongshan granites show very old Nd model ages (2.9-3.0 Ga), suggesting the existence of continental crust older than 2.7 Ga, which is supported by our zircon Hf isotopic data for these granites.
基金supported by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No.XDB18010105)the Talent start-up fund of Guiyang University(2019039510821)。
文摘To unravel the geochemical heterogeneity and its origin in different terranes of North China,we conducted geochronological and geochemical analyses of the meta-mafic rocks from the Lüliang–Zhongtiao rift zone(Shanxi Province).LA-ICP-MS zircon U–Pb dating yielded mostly End-Neoarchean to Proterozoic ages for the basement rocks(Sushui Complex:2516±26 Ma;Metamafic rocks:2494±31 Ma),Jiangxian Group(~2213 Ma),Zhongtiao Group(2077±29 Ma),Jiehekou Group(1998±23 Ma),and Lüliang Group(2152±52 Ma).Petrographic characteristics show that the meta-mafic rocks from the Neoarchean–Paleoproterozoic Zhongtiaoshan(Sushui Complex)have similar geochemical characteristics to the overlying Jiangxian and Zhongtiao Groups.The Paleoproterozoic Lüliang andYejishan Group meta-mafic rocks from Lüliangshan also have similar geochemical characteristics but are geochemically different from similar-age rocks from Zhongtiaoshan.This shows that the late-stage rocks have a geochemical inheritance from the early-stage rocks in the same region and that the geochemical heterogeneity of rocks from different areas was originated from the inherited heterogeneity of the magma source.
文摘Presented in this paper are the newly obtained grain zircon U-Pb ages of volcanic rocks of the Luliang Group and associated Kuanping granitic migmatitic gneiss in Shanxi Province. The zircon U-Ph ages of bimodal volcanic rocks (basalt and rhyolite) of the Upper Luliang Group indicate that the rocks erupted at about 2100 Ma. So the Luliang Group was formed during the Early Proterozoic. In the area studied the second-stage metamorphism experienced by the Luliang Group is the dominant one which took place at about 1806 Ma, i. e., during the late Early Proterozoic.
文摘The rhyolites in the upper Lüliang Group of Shanxi, China, are Paleoproterozoic weakly alkaline volcanic rocks. They are characterized by high SiO\-2, Na\-2O+K\-2O, Zr, Nb, Ga, Y and REE contents and large FeO\+*/MgO, Rb/Sr and Ga/Al ratios, and low CaO, Sr and Eu contents, and share much in common with the A type granitic rocks. They erupted in the rift setting at the continental margin. Chemical features and isotope data, as well as high Nd and low initial Sr ratios, suggest that the original granitic magma was derived from partial melting of Late Archean metamorphic rocks in the lower crust due to the influence of basaltic magma and hot fluid in response to rifting. The A type rhyolites were finally formed after the fractional crystallization of the dominant mineral feldspar.