期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
L─统计量的Bootstrap逼近 被引量:1
1
作者 任哲 陈明华 《大学数学》 1995年第4期78-81,共4页
L─统计量的Bootstrap逼近任哲,陈明华(六安师范专科学校,六安237012)本文提出了L──统计量的一种Bootstrap逼近,并讨论了这种逼近的相合性及其逼近的精确性。一、引言及主要定理设兄,i>1为来自分... L─统计量的Bootstrap逼近任哲,陈明华(六安师范专科学校,六安237012)本文提出了L──统计量的一种Bootstrap逼近,并讨论了这种逼近的相合性及其逼近的精确性。一、引言及主要定理设兄,i>1为来自分布为F的i.i.d.样本,以X.;... 展开更多
关键词 l─统计量 Bootstrap 次序统计 随机加权逼近 经验分布函数 独立随机变 不等式 极限定理 强逼近 BOOTSTRAP逼近
下载PDF
Tail asymptotic expansions for L-statistics
2
作者 HASHORVA Enkelejd LING ChengXiu PENG ZuoXiang 《Science China Mathematics》 SCIE 2014年第10期1993-2012,共20页
We derive higher-order expansions of L-statistics of independent risks X1,..., Xn under conditions on the underlying distribution function F. The new results are applied to derive the asymptotic expansions of ratios o... We derive higher-order expansions of L-statistics of independent risks X1,..., Xn under conditions on the underlying distribution function F. The new results are applied to derive the asymptotic expansions of ratios of two kinds of risk measures, stop-loss premium and excess return on capital, respectively. Several examples and a Monte Carlo simulation study show the efficiency of our novel asymptotic expansions. Keywords smoothly varying condition, second-order regular variation, tail asymptotics, value-at-risk, con- ditional tail expectation, largest claims reinsurance, ratio of risk measure, excess return on capital 展开更多
关键词 smoothly varying condition second-order regular variation tail asymptotics VAlUE-AT-RISK conditional tail expectation largest claims reinsurance ratio of risk measure excess return on capital 60E05 60F99
原文传递
A NEW TEST PROCEDURE FOR NEW BETTER THAN USED IN INCREASING CONVEX ORDERING
3
作者 LIXiaohu 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2004年第4期492-499,共8页
A new nonparametric procedure is developed to test the exponentiality against the strict NBUC property of a life distribution. The exact null distribution is derived by the theory of sample spacings, and the asymptoti... A new nonparametric procedure is developed to test the exponentiality against the strict NBUC property of a life distribution. The exact null distribution is derived by the theory of sample spacings, and the asymptotic normality is also established by the large sample theory of L-statistics. Finally, the lower and upper tailed probability of the exact null distribution and some numerical simulation results are presented as well. 展开更多
关键词 increasing convex ordering l-statistic NBUC sample spacings simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部