Ω results involving the coefficients of automorphic L-functions are important research object in analytic number theory.Let f be a primitive holomorphic cusp form.Denote by λ_(f×f)(n) the nth Fourier coefficien...Ω results involving the coefficients of automorphic L-functions are important research object in analytic number theory.Let f be a primitive holomorphic cusp form.Denote by λ_(f×f)(n) the nth Fourier coefficient of Rankin-Selberg L-function L(f×f,s).This paper combines Kühleitner and Nowak′s Omega theorem and the analytic properties of Rankin-Selberg L-functions to study Omega results for coefficients of Rankin-Selberg L-functions over sparse sequences,and establishes the asymptotic formula for Σ_(n≤x)λf×f(n^(m))(m=2,3).展开更多
In this paper, the author gives a new section theorem in L-convex spaces. And as its applications, the author proves a coincident theorem and a two-functional minimax theorem established in L-convex spaces.
In this paper, the global existence of weak s olutions to the initial boundary value problem for Boltzmann-Poisson system is proved. The proof is based on the regularization and the stability of the veloci ty averages...In this paper, the global existence of weak s olutions to the initial boundary value problem for Boltzmann-Poisson system is proved. The proof is based on the regularization and the stability of the veloci ty averages and the compactness results on L 1-theory.展开更多
Let π and π′ be unitary automorphic cuspidal representations of GL_n(A_E) and GL_m(A_F), and let E and F be solvable Galois extensions of Q of degrees ? and ?′, respectively. Using the fact that the automorphic in...Let π and π′ be unitary automorphic cuspidal representations of GL_n(A_E) and GL_m(A_F), and let E and F be solvable Galois extensions of Q of degrees ? and ?′, respectively. Using the fact that the automorphic induction and base change maps exist for E and F, and assuming an invariance condition under the actions of the Galois groups, we attach to the pair(π, π′) a Rankin-Selberg L-function L(s, π×E,Fπ′) for which we prove a prime number theorem. This gives a method for comparing two representations that could be defined over completely different extensions, and the main results give a measure of how many cuspidal components the two representations π and π′ have in common when automorphically induced down to the rational numbers. The proof uses the structure of the Galois group of the composite extension EF and the character groups attached to the fields via class field theory. The second main theorem also gives an indication of when the base change of π up to the composite extension EF remains cuspidal.展开更多
The main theme of this paper is to consider a notion of 'approximately unital operator systems' including both C*-algebras and unital operator systems.The goals are to prove a version of the Choi-Effros theore...The main theme of this paper is to consider a notion of 'approximately unital operator systems' including both C*-algebras and unital operator systems.The goals are to prove a version of the Choi-Effros theorem for these systems,to introduce a functorial process for forming an approximately unital operator systems from a given matrix ordered vector space with a proper approximate order unit,to study second duals of these objects and to prove that a C*-algebra can be characterized as an approximately unital operator system that is also an approximately unital matrix ordered *-algebra.展开更多
文摘Ω results involving the coefficients of automorphic L-functions are important research object in analytic number theory.Let f be a primitive holomorphic cusp form.Denote by λ_(f×f)(n) the nth Fourier coefficient of Rankin-Selberg L-function L(f×f,s).This paper combines Kühleitner and Nowak′s Omega theorem and the analytic properties of Rankin-Selberg L-functions to study Omega results for coefficients of Rankin-Selberg L-functions over sparse sequences,and establishes the asymptotic formula for Σ_(n≤x)λf×f(n^(m))(m=2,3).
基金the Scientific Research Common Program of Beijing Municipal Commission of Education(KM200610005014)
文摘In this paper, the author gives a new section theorem in L-convex spaces. And as its applications, the author proves a coincident theorem and a two-functional minimax theorem established in L-convex spaces.
文摘In this paper, the global existence of weak s olutions to the initial boundary value problem for Boltzmann-Poisson system is proved. The proof is based on the regularization and the stability of the veloci ty averages and the compactness results on L 1-theory.
文摘Let π and π′ be unitary automorphic cuspidal representations of GL_n(A_E) and GL_m(A_F), and let E and F be solvable Galois extensions of Q of degrees ? and ?′, respectively. Using the fact that the automorphic induction and base change maps exist for E and F, and assuming an invariance condition under the actions of the Galois groups, we attach to the pair(π, π′) a Rankin-Selberg L-function L(s, π×E,Fπ′) for which we prove a prime number theorem. This gives a method for comparing two representations that could be defined over completely different extensions, and the main results give a measure of how many cuspidal components the two representations π and π′ have in common when automorphically induced down to the rational numbers. The proof uses the structure of the Galois group of the composite extension EF and the character groups attached to the fields via class field theory. The second main theorem also gives an indication of when the base change of π up to the composite extension EF remains cuspidal.
文摘The main theme of this paper is to consider a notion of 'approximately unital operator systems' including both C*-algebras and unital operator systems.The goals are to prove a version of the Choi-Effros theorem for these systems,to introduce a functorial process for forming an approximately unital operator systems from a given matrix ordered vector space with a proper approximate order unit,to study second duals of these objects and to prove that a C*-algebra can be characterized as an approximately unital operator system that is also an approximately unital matrix ordered *-algebra.