研究了用Newton-Steffensen法求解非线性算子方程.当非线性算子F的一阶导数满足L-平均Lipschitz条件时,建立了Newton-Steffensen法的三阶收敛判据,同时也给出了收敛球半径的估计.作为应用,当F的一阶导数满足经典的Lipschitz条件时或F满...研究了用Newton-Steffensen法求解非线性算子方程.当非线性算子F的一阶导数满足L-平均Lipschitz条件时,建立了Newton-Steffensen法的三阶收敛判据,同时也给出了收敛球半径的估计.作为应用,当F的一阶导数满足经典的Lipschitz条件时或F满足γ-条件时,建立了Newton-Steffensen法的三阶收敛判据及给出了收敛球半径的估计.从而推广了[Journal of Nonlinear and Convex Analysis,2018,19:433-460]中的相应结果.展开更多
文摘研究了用Newton-Steffensen法求解非线性算子方程.当非线性算子F的一阶导数满足L-平均Lipschitz条件时,建立了Newton-Steffensen法的三阶收敛判据,同时也给出了收敛球半径的估计.作为应用,当F的一阶导数满足经典的Lipschitz条件时或F满足γ-条件时,建立了Newton-Steffensen法的三阶收敛判据及给出了收敛球半径的估计.从而推广了[Journal of Nonlinear and Convex Analysis,2018,19:433-460]中的相应结果.