Let L^2([0, 1], x) be the space of the real valued, measurable, square summable functions on [0, 1] with weight x, and let n be the subspace of L2([0, 1], x) defined by a linear combination of Jo(μkX), where J...Let L^2([0, 1], x) be the space of the real valued, measurable, square summable functions on [0, 1] with weight x, and let n be the subspace of L2([0, 1], x) defined by a linear combination of Jo(μkX), where Jo is the Bessel function of order 0 and {μk} is the strictly increasing sequence of all positive zeros of Jo. For f ∈ L^2([0, 1], x), let E(f, n) be the error of the best L2([0, 1], x), i.e., approximation of f by elements of n. The shift operator off at point x ∈[0, 1] with step t ∈[0, 1] is defined by T(t)f(x)=1/π∫0^π f(√x^2 +t^2-2xtcosO)dθ The differences (I- T(t))^r/2f = ∑j=0^∞(-1)^j(j^r/2)T^j(t)f of order r ∈ (0, ∞) and the L^2([0, 1],x)- modulus of continuity ωr(f,τ) = sup{||(I- T(t))^r/2f||:0≤ t ≤τ] of order r are defined in the standard way, where T^0(t) = I is the identity operator. In this paper, we establish the sharp Jackson inequality between E(f, n) and ωr(f, τ) for some cases of r and τ. More precisely, we will find the smallest constant n(τ, r) which depends only on n, r, and % such that the inequality E(f, n)≤ n(τ, r)ωr(f, τ) is valid.展开更多
基金supported partly by National Natural Science Foundation of China (No.10471010)partly by the project"Representation Theory and Related Topics"of the"985 Program"of Beijing Normal University and Beijing Natural Science Foundation (1062004).
文摘Let L^2([0, 1], x) be the space of the real valued, measurable, square summable functions on [0, 1] with weight x, and let n be the subspace of L2([0, 1], x) defined by a linear combination of Jo(μkX), where Jo is the Bessel function of order 0 and {μk} is the strictly increasing sequence of all positive zeros of Jo. For f ∈ L^2([0, 1], x), let E(f, n) be the error of the best L2([0, 1], x), i.e., approximation of f by elements of n. The shift operator off at point x ∈[0, 1] with step t ∈[0, 1] is defined by T(t)f(x)=1/π∫0^π f(√x^2 +t^2-2xtcosO)dθ The differences (I- T(t))^r/2f = ∑j=0^∞(-1)^j(j^r/2)T^j(t)f of order r ∈ (0, ∞) and the L^2([0, 1],x)- modulus of continuity ωr(f,τ) = sup{||(I- T(t))^r/2f||:0≤ t ≤τ] of order r are defined in the standard way, where T^0(t) = I is the identity operator. In this paper, we establish the sharp Jackson inequality between E(f, n) and ωr(f, τ) for some cases of r and τ. More precisely, we will find the smallest constant n(τ, r) which depends only on n, r, and % such that the inequality E(f, n)≤ n(τ, r)ωr(f, τ) is valid.