期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
NLP问题解的二阶条件和Lipschitz连续性
1
作者 余仲华 《北京理工大学学报》 EI CAS CSCD 1990年第4期18-26,共9页
假定所讨论的数学规划问题其函数连续可微且有Lipschitz连续的梯度函数运用Clarke广义Jacobi矩阵,给出了非线性规划(NLP)问题解的二阶最优性必要条件二阶最优性充分条件及非线性参数规划问题解的Lipschitz连续性质,推广了王金德Fiacco... 假定所讨论的数学规划问题其函数连续可微且有Lipschitz连续的梯度函数运用Clarke广义Jacobi矩阵,给出了非线性规划(NLP)问题解的二阶最优性必要条件二阶最优性充分条件及非线性参数规划问题解的Lipschitz连续性质,推广了王金德Fiacco的主要结果。 展开更多
关键词 非线性规划 二阶最优性 l-连续性
下载PDF
The Jackson Inequality for the Best L^2-Approximation of Functions on [0,1] with the Weight x 被引量:1
2
作者 Jian Li Yongping Liu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2008年第3期340-356,共17页
Let L^2([0, 1], x) be the space of the real valued, measurable, square summable functions on [0, 1] with weight x, and let n be the subspace of L2([0, 1], x) defined by a linear combination of Jo(μkX), where J... Let L^2([0, 1], x) be the space of the real valued, measurable, square summable functions on [0, 1] with weight x, and let n be the subspace of L2([0, 1], x) defined by a linear combination of Jo(μkX), where Jo is the Bessel function of order 0 and {μk} is the strictly increasing sequence of all positive zeros of Jo. For f ∈ L^2([0, 1], x), let E(f, n) be the error of the best L2([0, 1], x), i.e., approximation of f by elements of n. The shift operator off at point x ∈[0, 1] with step t ∈[0, 1] is defined by T(t)f(x)=1/π∫0^π f(√x^2 +t^2-2xtcosO)dθ The differences (I- T(t))^r/2f = ∑j=0^∞(-1)^j(j^r/2)T^j(t)f of order r ∈ (0, ∞) and the L^2([0, 1],x)- modulus of continuity ωr(f,τ) = sup{||(I- T(t))^r/2f||:0≤ t ≤τ] of order r are defined in the standard way, where T^0(t) = I is the identity operator. In this paper, we establish the sharp Jackson inequality between E(f, n) and ωr(f, τ) for some cases of r and τ. More precisely, we will find the smallest constant n(τ, r) which depends only on n, r, and % such that the inequality E(f, n)≤ n(τ, r)ωr(f, τ) is valid. 展开更多
关键词 Jackson inequality modulus of continuity best approximation Bessel function.
下载PDF
CONTINUOUS L-DOMAINS 被引量:8
3
作者 LIANG JIHUA LIU YINGMING(Institute of Mathematics, Sichuan University, Chengdu 610064, China.)(Project supported by the National Natural Science Foundation of China.) 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1996年第3期263-270,共8页
Two characterization theorems of continuous L-domain are given. Then a problem raisedby J. D. Lawson and M. Mislove is solved.
关键词 l-DOMAIN Continuous DCPO Domain theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部