L-arabinose isomerase (L-AI) is the key enzyme for D-galactose isomerization of D-tagatose by biological method. In this research, Lactobacillus plantarum WU14 with high D-tagatose yield was identified as Lactobacillu...L-arabinose isomerase (L-AI) is the key enzyme for D-galactose isomerization of D-tagatose by biological method. In this research, Lactobacillus plantarum WU14 with high D-tagatose yield was identified as Lactobacillus plantarum was isolated from the number of lactic acid bacteria from pickled vegetables. The crude L-arabinose isomerase activity of Lactobacillus plantarum WU14 with high D-tagatose yield was 13.95 U/mL under the optimal temperature 60°C, pH 7.17 and substrate concentration 0.8 mol/L, and the conversion rate of 56.12% could be gained after 28 hours. Protein structure and specific of L-Arabinose Isomerase of Lactobacillus plantarum WU14 were researched. The results showed that L-arabinose isomerase is mainly composed of alpha helix and random coil. Then the recombinant L-AI gene was inserted into the food-grade expression vector pRNA48 and expressed in L. lactis NZ9000 successfully. The target protein expression reached the maximum amount when the induced concentration of nisin reaches 30 ng/mL after 12 h. And the crude enzyme activity of recombinant bacteria reached 6.21 U/mL under 60°C. Otherwise the optimal conversion rate recombinant of L. lactis NZ9000/pRNA48-L-AI can reach 39.21% under the temperature of 50°C, pH 7.17 and D-galactose concentration was 0.6 mol/L.展开更多
Solid–liquid phase equilibrium data for binary(L-arabinose–water) and(D-xylose–water) systems at temperatures from(269.85–298.05) K and ternary(L-arabinose–D-xylose–water) system at temperatures of 273.85 K,278....Solid–liquid phase equilibrium data for binary(L-arabinose–water) and(D-xylose–water) systems at temperatures from(269.85–298.05) K and ternary(L-arabinose–D-xylose–water) system at temperatures of 273.85 K,278.85 K and 284.45 K were measured at atmospheric pressure.The ternary phase diagrams of the systems were constructed on the base of the measured solubility.Two pure solid phases were formed at given temperatures,including pure L-arabinose and pure D-xylose,which were con firmed and determined by the method of Schreinemakers' wet residue.At the same temperature,the crystallization region of L-arabinose was larger than D-xylose's.The acquired solubility data were then correlated using the NRTL model,Wilson model and Xu model.The calculated solubility with the three models agreed well with the experimental values.展开更多
L-arabinose is a newly developed low-caloric monosaccharide, which has many biomedical and health effects, especially intestinal sucrase inhibition effect. L-arabinose is mainly produced by chemical or enzymatic hydro...L-arabinose is a newly developed low-caloric monosaccharide, which has many biomedical and health effects, especially intestinal sucrase inhibition effect. L-arabinose is mainly produced by chemical or enzymatic hydrolysis of hemicellulose. The taste of L-arabinose is quite similar to that of sucrose, with approximately 50% of the sweetness. As a functional additive, L-arabinose can be used in medical and pharmaceutical applications for the treatment of diseases such as diabetes, chronic constipation, mineral absorption disorder and secondary bile acid formation disorder. However, L-arabinose has not been widely used in functional foods due to high price and lack of publicity and guidance. A comprehensive review of L-arabinose physicochemical properties, production, applications field, market statue and development direction is presented in this paper.展开更多
文摘L-arabinose isomerase (L-AI) is the key enzyme for D-galactose isomerization of D-tagatose by biological method. In this research, Lactobacillus plantarum WU14 with high D-tagatose yield was identified as Lactobacillus plantarum was isolated from the number of lactic acid bacteria from pickled vegetables. The crude L-arabinose isomerase activity of Lactobacillus plantarum WU14 with high D-tagatose yield was 13.95 U/mL under the optimal temperature 60°C, pH 7.17 and substrate concentration 0.8 mol/L, and the conversion rate of 56.12% could be gained after 28 hours. Protein structure and specific of L-Arabinose Isomerase of Lactobacillus plantarum WU14 were researched. The results showed that L-arabinose isomerase is mainly composed of alpha helix and random coil. Then the recombinant L-AI gene was inserted into the food-grade expression vector pRNA48 and expressed in L. lactis NZ9000 successfully. The target protein expression reached the maximum amount when the induced concentration of nisin reaches 30 ng/mL after 12 h. And the crude enzyme activity of recombinant bacteria reached 6.21 U/mL under 60°C. Otherwise the optimal conversion rate recombinant of L. lactis NZ9000/pRNA48-L-AI can reach 39.21% under the temperature of 50°C, pH 7.17 and D-galactose concentration was 0.6 mol/L.
基金Supported by the National Natural Science Foundation of China(21376231)
文摘Solid–liquid phase equilibrium data for binary(L-arabinose–water) and(D-xylose–water) systems at temperatures from(269.85–298.05) K and ternary(L-arabinose–D-xylose–water) system at temperatures of 273.85 K,278.85 K and 284.45 K were measured at atmospheric pressure.The ternary phase diagrams of the systems were constructed on the base of the measured solubility.Two pure solid phases were formed at given temperatures,including pure L-arabinose and pure D-xylose,which were con firmed and determined by the method of Schreinemakers' wet residue.At the same temperature,the crystallization region of L-arabinose was larger than D-xylose's.The acquired solubility data were then correlated using the NRTL model,Wilson model and Xu model.The calculated solubility with the three models agreed well with the experimental values.
文摘L-arabinose is a newly developed low-caloric monosaccharide, which has many biomedical and health effects, especially intestinal sucrase inhibition effect. L-arabinose is mainly produced by chemical or enzymatic hydrolysis of hemicellulose. The taste of L-arabinose is quite similar to that of sucrose, with approximately 50% of the sweetness. As a functional additive, L-arabinose can be used in medical and pharmaceutical applications for the treatment of diseases such as diabetes, chronic constipation, mineral absorption disorder and secondary bile acid formation disorder. However, L-arabinose has not been widely used in functional foods due to high price and lack of publicity and guidance. A comprehensive review of L-arabinose physicochemical properties, production, applications field, market statue and development direction is presented in this paper.