A new coarse-to-fine strategy was proposed for nonrigid registration of computed tomography(CT) and magnetic resonance(MR) images of a liver.This hierarchical framework consisted of an affine transformation and a B-sp...A new coarse-to-fine strategy was proposed for nonrigid registration of computed tomography(CT) and magnetic resonance(MR) images of a liver.This hierarchical framework consisted of an affine transformation and a B-splines free-form deformation(FFD).The affine transformation performed a rough registration targeting the mismatch between the CT and MR images.The B-splines FFD transformation performed a finer registration by correcting local motion deformation.In the registration algorithm,the normalized mutual information(NMI) was used as similarity measure,and the limited memory Broyden-Fletcher- Goldfarb-Shannon(L-BFGS) optimization method was applied for optimization process.The algorithm was applied to the fully automated registration of liver CT and MR images in three subjects.The results demonstrate that the proposed method not only significantly improves the registration accuracy but also reduces the running time,which is effective and efficient for nonrigid registration.展开更多
The fi rst arrival waveform inversion(FAWI)has a strong nonlinearity due to the objective function using L2 parametrization.When the initial velocity is not accurate,the inversion can easily fall into local minima.In ...The fi rst arrival waveform inversion(FAWI)has a strong nonlinearity due to the objective function using L2 parametrization.When the initial velocity is not accurate,the inversion can easily fall into local minima.In the full waveform inversion method,adding a cross-correlation function to the objective function can eff ectively reduce the nonlinearity of the inversion process.In this paper,the nonlinearity of this process is reduced by introducing the correlation objective function into the FAWI and by deriving the corresponding gradient formula.We then combine the first-arrival wave travel-time tomography with the FAWI to form a set of inversion processes.This paper uses the limited memory Broyden-Fletcher-Goldfarb-Shanno(L-BFGS)algorithm to improve the computational effi ciency of inversion and solve the problem of the low effi ciency of the FAWI method.The overthrust model and fi eld data test show that the method used in this paper can eff ectively reduce the nonlinearity of inversion and improve the inversion calculation effi ciency at the same time.展开更多
基金Project(61240010)supported by the National Natural Science Foundation of ChinaProject(20070007070)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘A new coarse-to-fine strategy was proposed for nonrigid registration of computed tomography(CT) and magnetic resonance(MR) images of a liver.This hierarchical framework consisted of an affine transformation and a B-splines free-form deformation(FFD).The affine transformation performed a rough registration targeting the mismatch between the CT and MR images.The B-splines FFD transformation performed a finer registration by correcting local motion deformation.In the registration algorithm,the normalized mutual information(NMI) was used as similarity measure,and the limited memory Broyden-Fletcher- Goldfarb-Shannon(L-BFGS) optimization method was applied for optimization process.The algorithm was applied to the fully automated registration of liver CT and MR images in three subjects.The results demonstrate that the proposed method not only significantly improves the registration accuracy but also reduces the running time,which is effective and efficient for nonrigid registration.
基金supported by the Major Scientific and Technological Project of PetroChina (ZD2019-183-003)Project of National Natural Science Foundation of China (42074133)+1 种基金the Fundamental Research Funds for the Central Universities (19CX02056A)Project of State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development (33550000-21-FW0399-0009)
文摘The fi rst arrival waveform inversion(FAWI)has a strong nonlinearity due to the objective function using L2 parametrization.When the initial velocity is not accurate,the inversion can easily fall into local minima.In the full waveform inversion method,adding a cross-correlation function to the objective function can eff ectively reduce the nonlinearity of the inversion process.In this paper,the nonlinearity of this process is reduced by introducing the correlation objective function into the FAWI and by deriving the corresponding gradient formula.We then combine the first-arrival wave travel-time tomography with the FAWI to form a set of inversion processes.This paper uses the limited memory Broyden-Fletcher-Goldfarb-Shanno(L-BFGS)algorithm to improve the computational effi ciency of inversion and solve the problem of the low effi ciency of the FAWI method.The overthrust model and fi eld data test show that the method used in this paper can eff ectively reduce the nonlinearity of inversion and improve the inversion calculation effi ciency at the same time.