期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于智能选择多维特征的肺部CT图像检索 被引量:2
1
作者 刘丛 唐坚刚 张丽红 《计算机应用》 CSCD 北大核心 2010年第7期1867-1869,共3页
单一特征检索图像和手工设置多维加权系数特征检索图像越来越不能满足基于内容图像检索精度的需要,为此提出一种基于训练样本集聚类的多维特征向量加权算法。该算法需要手工建立训练样本集,提取出每个图像的颜色、纹理和形状等多维特征... 单一特征检索图像和手工设置多维加权系数特征检索图像越来越不能满足基于内容图像检索精度的需要,为此提出一种基于训练样本集聚类的多维特征向量加权算法。该算法需要手工建立训练样本集,提取出每个图像的颜色、纹理和形状等多维特征,使用遗传算法寻找特征向量集的最优加权系数序列,最后使用该加权序列计算测试集的特征值进行图像检索。实验证明,该算法相对于单一特征检索和手工设置多维特征加权在检索的准确度上有一定的提高,并且在相似度比较高的两个聚类检索时,有很高的准确性。 展开更多
关键词 图像检索 训练样本集 多维特征向量 遗传算法 最优加权系数
下载PDF
基于L-M梯度迭代算法的煤质发热量预测模型 被引量:1
2
作者 黄奎 王充实 +5 位作者 王林立 窦有权 张冬练 曾文慧 王嘉垠 曾勇 《科技导报》 CAS CSCD 北大核心 2023年第20期106-112,共7页
选取150家火电企业的煤质检测数据,通过分析泛在煤质化验数据信息,构建L-M算法下的煤质发热量的预测模型。实验结果表明:(1)煤质化验数据中仅碳(Cd)、灰分(Aad)与发热量(Qgr,ad)的线性关系较为显著,相关系数R2为0.8768和0.6880;(2)主成... 选取150家火电企业的煤质检测数据,通过分析泛在煤质化验数据信息,构建L-M算法下的煤质发热量的预测模型。实验结果表明:(1)煤质化验数据中仅碳(Cd)、灰分(Aad)与发热量(Qgr,ad)的线性关系较为显著,相关系数R2为0.8768和0.6880;(2)主成分分析法挖掘出影响煤质发热量的主成分特征值、特征矩阵及得分,实现了由六维矩阵降至四维矩阵的降维效果,增强了神经网络在训练过程中收敛的稳定性;(3)基于L-M算法下,改进的BP神经网络预测模型(LMBP)的训练集系数Rt、验证集系数Ra和测试集系数Rm分别为0.9957、0.9942和0.9963,总体系数为0.9931,同时通过待测20组数据进一步验证了LMBP预测模型可靠,预测精度较高,更符合实际预测需求。 展开更多
关键词 煤质化验数据 主成分分析法 l-m算法 训练集系数
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部