The duality theorem of generalized weak smash coproducts of weak module coalgebras and comodule coalgebras over quantum groupoids is studied.Let H be a weak Hopf algebra,C a left weak H-comodule coalgebra and D a left...The duality theorem of generalized weak smash coproducts of weak module coalgebras and comodule coalgebras over quantum groupoids is studied.Let H be a weak Hopf algebra,C a left weak H-comodule coalgebra and D a left weak H-module coalgebra.First,a weak generalized smash coproduct C×lH D over quantum groupoids is defined and the module and comodule structures on it are constructed.The weak generalized right smash coproduct C×rL D is similar.Then some isomorph-isms between them are obtained.Secondly,by introducing some concepts of a weak convolution invertible element,a weak co-inner coaction and a strongly relative co-inner coaction,a sufficient condition for C×rH D to be isomorphic to Cv D is obtained,where v∈WC(C,H)and the coaction of H on D is right strongly relative co-inner.Finally,the duality theorem for a generalized smash coproduct over quantum groupoids,(C×lH H)×lH H≌Cv(H×lH H),is obtained.展开更多
The theory of L-R smash product is extended to multiplier Hopf algebras and a sufficient condition for L-R smash product to be regular multiplier Hopf algebras is given. In particular, the result of the paper implies ...The theory of L-R smash product is extended to multiplier Hopf algebras and a sufficient condition for L-R smash product to be regular multiplier Hopf algebras is given. In particular, the result of the paper implies Delvaux's main theorem in the case of smash products.展开更多
In this paper we generalize the notions of crossed products and L-R smash products in the context of multiplier Hopf algebras. We use comodule algebras to define generalized diagonal crossed products, L-R smash produc...In this paper we generalize the notions of crossed products and L-R smash products in the context of multiplier Hopf algebras. We use comodule algebras to define generalized diagonal crossed products, L-R smash products, two-sided smash products and two-sided crossed products and prove that they are all associative algebras. Then we show the isomorphic relations of them.展开更多
Let (C,α) and (H, β) be Hom-bialgebras and ω : C × H → H × C a linear map. We introduce a Horn-ω-smash coproduct (Cω H, γ) and give necessary and sufficient conditions for (Cω H, γ) to be...Let (C,α) and (H, β) be Hom-bialgebras and ω : C × H → H × C a linear map. We introduce a Horn-ω-smash coproduct (Cω H, γ) and give necessary and sufficient conditions for (Cω H, γ) to be a Hom-bialgebra. We study the quasi-triangular structures over (Cω H, γ) and show the necessary and sufficient conditions for (Cω H, γ R) to be a quasi-triangular Hom-Hopf algebra. As applications of our results, we introduce the concept of D(H)* and construct quasi-triangular structures over D(H)*.展开更多
基金The National Natural Science Foundation of China(No.10871042)the Natural Science Foundation of Jiangsu Province(No.BK2009258)
文摘The duality theorem of generalized weak smash coproducts of weak module coalgebras and comodule coalgebras over quantum groupoids is studied.Let H be a weak Hopf algebra,C a left weak H-comodule coalgebra and D a left weak H-module coalgebra.First,a weak generalized smash coproduct C×lH D over quantum groupoids is defined and the module and comodule structures on it are constructed.The weak generalized right smash coproduct C×rL D is similar.Then some isomorph-isms between them are obtained.Secondly,by introducing some concepts of a weak convolution invertible element,a weak co-inner coaction and a strongly relative co-inner coaction,a sufficient condition for C×rH D to be isomorphic to Cv D is obtained,where v∈WC(C,H)and the coaction of H on D is right strongly relative co-inner.Finally,the duality theorem for a generalized smash coproduct over quantum groupoids,(C×lH H)×lH H≌Cv(H×lH H),is obtained.
基金Supported by National Natural Science Foundation of China(10871170)Educational Minister Science Technology Key Foundation of China(10871170)College Special Research Doctoral Disciplines Point Fund of China(20100097110040)
基金Supported by the Educational Ministry Science Technique Research Key Foundation of China (108154)the National Natural Science Foundation of China (10871170)
文摘This paper gives a duality theorem for weak L-R smash products, which extends the duality theorem for weak smash products given by Nikshych.
基金Supported by the Ningbo Natural Science Foundation(2006A610089)
文摘The theory of L-R smash product is extended to multiplier Hopf algebras and a sufficient condition for L-R smash product to be regular multiplier Hopf algebras is given. In particular, the result of the paper implies Delvaux's main theorem in the case of smash products.
基金Foundation item: Supported by the Scientific Research Foundation for Doctoral Scientists of Henan University of Science and Technology(09001303) Supported by the National Natural Science Foundation of China(11101128)
文摘In this paper we generalize the notions of crossed products and L-R smash products in the context of multiplier Hopf algebras. We use comodule algebras to define generalized diagonal crossed products, L-R smash products, two-sided smash products and two-sided crossed products and prove that they are all associative algebras. Then we show the isomorphic relations of them.
基金Supported by the National Natural Science Foundation of China(60873267)the Ningbo Natural Science Foundation of China(2011A610172)K.C.Wang Magna Fund in Ningbo University
文摘Let (C,α) and (H, β) be Hom-bialgebras and ω : C × H → H × C a linear map. We introduce a Horn-ω-smash coproduct (Cω H, γ) and give necessary and sufficient conditions for (Cω H, γ) to be a Hom-bialgebra. We study the quasi-triangular structures over (Cω H, γ) and show the necessary and sufficient conditions for (Cω H, γ R) to be a quasi-triangular Hom-Hopf algebra. As applications of our results, we introduce the concept of D(H)* and construct quasi-triangular structures over D(H)*.