The equations of generalized thermoelasticity with one relaxation time with variable modulus of elasticity and the thermal conductivity were used to solve a problem of an infinite material with a spherical cavity.The ...The equations of generalized thermoelasticity with one relaxation time with variable modulus of elasticity and the thermal conductivity were used to solve a problem of an infinite material with a spherical cavity.The inner surface of the cavity was taken to be traction free and acted upon by a thermal shock to the surface. Laplace transforms techniques were used to obtain the solution by a direct approach.The inverse Laplace transforms was obtained numerically.The temperature,displacement and stress distributions are represented graphically.展开更多
In this work, a model of two-temperature generalized thermoelasticity without energy dissipation for an elastic half-space with constant elastic parameters is constructed. The Laplace transform and state-space techniq...In this work, a model of two-temperature generalized thermoelasticity without energy dissipation for an elastic half-space with constant elastic parameters is constructed. The Laplace transform and state-space techniques are used to obtain the general solution for any set of boundary conditions. The general solutions are applied to a specific problem of a half-space subjected to a moving heat source with a constant velocity. The inverse Laplace transforms are computed numerically, and the comparisons are shown in figures to estimate the effects of the heat source velocity and the two-temperature parameter.展开更多
The thermoelastic interaction for the three-phase-lag (TPL) heat equation in an isotropic infinite elastic body with a spherical cavity is studied by two-temperature generalized thermoelasticity theory (2TT). The ...The thermoelastic interaction for the three-phase-lag (TPL) heat equation in an isotropic infinite elastic body with a spherical cavity is studied by two-temperature generalized thermoelasticity theory (2TT). The heat conduction equation in the theory of TPL is a hyperbolic partial differential equation with a fourth-order derivative with respect to time. The medium is assumed to be initially quiescent. By the Laplace trans- formation, the fundamental equations are expressed in the form of a vector-matrix differ- ential equation, which is solved by a state-space approach. The general solution obtained is applied to a specific problem, when the boundary of the cavity is subjected to the ther- mal loading (the thermal shock and the ramp-type heating) and the mechanical loading. The inversion of the Laplace transform is carried out by the Fourier series expansion tech- niques. The numerical values of the physical quantity are computed for the copper like ma- terial. Significant dissimilarities between two models (the two-temperature Green-Naghdi theory with energy dissipation (2TGN-III) and two-temperature TPL model (2T3phase)) are shown graphically. The effects of two-temperature and ramping parameters are also studied.展开更多
This work is devoted to a study of the induced temperature and stress fields in an elastic half space in context of clas-sical coupled thermoelasticity and generalized thermoelasticity in a unified system of equations...This work is devoted to a study of the induced temperature and stress fields in an elastic half space in context of clas-sical coupled thermoelasticity and generalized thermoelasticity in a unified system of equations. The half space is con-sidered to be made of an isotropic homogeneous thermoelastic material. The bounding plane surface is heated by a non-Gaussian laser beam with pulse duration of 2 ps. An exact solution of the problem is first obtained in Laplace transform space. Since the response is of more interest in the transient state, the inversion of Laplace transforms have been carried numerically. The derived expressions are computed numerically for copper and the results are presented in graphical form.展开更多
The present paper deals with thermoelastic problems of finitely long hollow cylinder com-posed of two different materials with axial sym- metry. The medium is traction-free, with neglig-ible body forces and with inter...The present paper deals with thermoelastic problems of finitely long hollow cylinder com-posed of two different materials with axial sym- metry. The medium is traction-free, with neglig-ible body forces and with internal and external heat generations. The governing equations for different theories of the generalized thermoe-lasticity are written in terms of displacement and temperature increment. The exact solution of the problem;using different theories of generalized thermoelasticity;has been deduced. The analytical expressions for displacements, temperature and stresses are found in final forms, and a numerical example has been taken to discuss the effect of the relaxation times. Finally, the results have been illustrated graphi- cally to find the responses of different theories.展开更多
This work is dealing with two-temperature generalized thermoelasticity without energy dissipation infinite medium with spherical cavity when the surface of this cavity is subjected to laser heating pulse. The closed f...This work is dealing with two-temperature generalized thermoelasticity without energy dissipation infinite medium with spherical cavity when the surface of this cavity is subjected to laser heating pulse. The closed form solutions for the two types of temperature, strain, and the stress distribution due to time exponentially decaying laser pulse are constructed. The Laplace transformation method is employed when deriving the governing equations. The inversion of Laplace transform will be obtained numerically by using the Riemann-sum approximation method. The results have been presented in figures to show the effect of the time exponentially decaying laser pulse and the two temperature parameter on all the studied fields.展开更多
The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governi...The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order generalized thermoelasticity with three-phase lag model for functionally graded materials(FGM)(i.e., material with spatially varying material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach.The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an improvement on studying elastic materials.展开更多
The present paper is concerned with the investigation of disturbances in'a homogeneous, isotropic elastic medium with generalized thermoelastic diffusion, when a moving source is acting along one of the co-ordinate a...The present paper is concerned with the investigation of disturbances in'a homogeneous, isotropic elastic medium with generalized thermoelastic diffusion, when a moving source is acting along one of the co-ordinate axis on the boundary of the medium. Eigen value approach is applied to study the disturbance in Laplace-Fourier transform domain for a two dimensional problem. The analytical expressions for displacement components, stresses, temperature field, concentration and chemical potential are obtained in the physical domain by using a numerical technique for the inversion of Laplace transform based on Fourier expansion techniques. These expressions are calculated numerically for a copper like material and depicted graphically. As special cases, the results in generalized thermoelastic and elastic media are obtained. Effect of presence of diffusion is analyzed theoretically and numerically.展开更多
This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of ...This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). The surface of cavity is stress-free and is subjected to a time-dependent thermal shock. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by an eigenvalue approach. Numerical inversion of the transforms is carried out using the Bellman method. Displacement, stress and temperature are computed and presented graphically. It is found that variation in the thermo-physical properties of a material strongly influences the response to loading. A comparative study with a corresponding homogeneous material is also made.展开更多
The present problem is concerned with the study of deformation of a rotating generalized thermoelastic solid with an overlying infinite thermoelastic fluid due to different forces acting along the interface under the ...The present problem is concerned with the study of deformation of a rotating generalized thermoelastic solid with an overlying infinite thermoelastic fluid due to different forces acting along the interface under the influence of gravity.The components of displacement,force stress,and temperature distribution are first obtained in Laplace and Fourier domains by applying integral transforms,and then obtained in the physical domain by applying a numerical inversion method.Some particular cases are also discussed in the context of the problem.The results are also presented graphically to show the effect of rotation and gravity in the medium.展开更多
This paper presents an investigation of temperature, displacement, stress, and induced magnetic field in a half space perfectly-conductive plate. Finite element equations regarding generalized magneto-thermoelasticity...This paper presents an investigation of temperature, displacement, stress, and induced magnetic field in a half space perfectly-conductive plate. Finite element equations regarding generalized magneto-thermoelasticity problems with two relaxation times (i.e., the G-L theory) are derived using the principle of virtual work. For avoiding numerical complication involved in inverse Laplace and Fourier transformation and low precision thereof, the equations are solved directly in time-domain. As a numerical example, the derived equation is used to investigate the generalized magneto-thermoelastic behavior of a semi-infinite plate under magnetic field and subjecting to a thermal shock loading. The results demonstrate that FEM can faithfully predict the deformation of the plate and the induced magnetic field, and most importantly can reveal the sophisticated second sound effect of heat conduction in two-dimensional generalized thermoelastic solids, which is usually difficult to model by routine transformation methods. A peak can be observed in the distribution of stress and induced front and the magnitude of magnetic field at the heat wave the peak decreases with time, which can not be obtained by transformation methods. The new method can also be used to study generalized piezo-thermoelastic problems.展开更多
A mathematical model is elaborated for a thermoelastic infinite body with a spherical cavity.A generalized set of governing equations is formulated in the context of three different models of thermoelasticity:the Biot...A mathematical model is elaborated for a thermoelastic infinite body with a spherical cavity.A generalized set of governing equations is formulated in the context of three different models of thermoelasticity:the Biot model,also known as“coupled thermoelasticity”model;the Lord-Shulman model,also referred to as“generalized thermoelasticity with one-relaxation time”approach;and the Green-Lindsay model,also called“generalized thermoelasticity with two-relaxation times”approach.The Adomian’s decomposition method is used to solve the related mathematical problem.The bounding plane of the cavity is subjected to harmonic thermal loading with zero heat flux and strain.Numerical results for the temperature,radial stress,strain,and displacement are represented graphically.It is shown that the angular thermal load and the relaxation times have significant effects on all the studied fields.展开更多
The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the imp...The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the impact of thermal loading with energy dissipation is the focus of this research. To model the thermal boundary condition(in the form of thermal conduction),generalized Cattaneo model(GCM) is employed. In the reference configuration, a nonlinear coupled Lord-Shulman-type generalized thermoelasticity formulation using finite strain theory(FST) is developed and the temperature dependency of the thermal conductivity is considered to derive the equations. In order to solve the time-dependent and nonlinear equations, Newmark’s numerical time integration technique and an updated finite element algorithm is applied and to ensure achieving accurate continuity of the results, the Hermitian elements are used instead of Lagrangian’s. The numerical responses for different factors such as input heat flux and nonlinear terms are expressed graphically and their impacts on the system’s reaction are discussed in detail.The results of the study are presented for Green–Lindsay model and the findings are compared with Lord-Shulman model especially with regards to heat wave propagation. It is shown that the nature of the laser’s thermal shock and its geometry are particularly determinative in the final stage of deformation. The research also concluded that employing FST leads to achieving more accuracy in terms of elastic deformations;however, the thermally nonlinear analysis does not change the results markedly. For this reason, the nonlinear theory of deformation is required in laser related reviews, while it is reasonable to ignore the temperature changes compared to the reference temperature in deriving governing equations.展开更多
The present paper is devoted to the study of Rayleigh wave propagation in a homogeneous, transversely isotropic, thermoelastic diffusive half-space, subject to stress free, thermally insulated/isothermal, and chemical...The present paper is devoted to the study of Rayleigh wave propagation in a homogeneous, transversely isotropic, thermoelastic diffusive half-space, subject to stress free, thermally insulated/isothermal, and chemical potential boundary conditions in the context of the generalized thermoelastic diffusion theory. The Green-Lindsay(GL) theory is used in the study. In this theory, thermodiffusion and thermodiffusion mechanical relaxations are governed by four different time constants. Secular equations for surface wave propagation in the considered media are derived. Anisotropy and diffusion effects on the phase velocity, attenuation coefficient are graphically presented in order to present the analytical results and make comparison. Some special cases of frequency equations are derived from the present investigation.展开更多
The present investigation is concerned with an axi-symmetric problem in the electromagnetic micropolar thermoelastic half-space whose surface is subjected to the mechanical or thermal source. Laplace and Hankel transf...The present investigation is concerned with an axi-symmetric problem in the electromagnetic micropolar thermoelastic half-space whose surface is subjected to the mechanical or thermal source. Laplace and Hankel transform techniques are used to solve the problem. Various types of sources are taken to illustrate the utility of the approach. Integral transforms are inverted by using a numerical technique to obtain the components of stresses, temperature distribution, and induced electric and magnetic fields. The expressions of these quantities are illustrated graphically to depict the magnetic effect for two different generalized thermoelasticity theories, i.e., Lord and Shulman (L-S theory) and Green and Lindsay (G-L theory). Some particular interesting cases are also deduced from the present investigation.展开更多
In this paper, Rayleigh surface wave is studied at a stress free thermally insulated surface of a two-temperature thermoelastic solid half-space in absence of energy dissipation. The governing equations of two-tempera...In this paper, Rayleigh surface wave is studied at a stress free thermally insulated surface of a two-temperature thermoelastic solid half-space in absence of energy dissipation. The governing equations of two-temperature generalized thermoelastic medium without energy dissipation are solved for surface wave solutions. The appropriate particular solutions are applied to the required boundary conditions to obtain the frequency equation of the Rayleigh wave. Some special cases are also derived. The non-dimensional speed is computed numerically and shown graphically to show the dependence on the frequency and two-temperature parameter.展开更多
The purpose of this paper is to study the effect of rotation on the general three-dimensional model of the equations of the generalized thermoelasticity for a homogeneous isotropic elastic half-space solid. The proble...The purpose of this paper is to study the effect of rotation on the general three-dimensional model of the equations of the generalized thermoelasticity for a homogeneous isotropic elastic half-space solid. The problem is studied in the context of the Green-Naghdi theory of type II (without energy dissipation). The normal mode analysis is used to obtain the expressions for the temperature, thermal stress, strain and displacement. The distributions of variables considered are represented graphically.展开更多
In this work, a mathematical model of an elastic material with cylindrical cavity will be constructed. The governing equations will be taken into the context of the fractional order generalized thermoelasticity theory...In this work, a mathematical model of an elastic material with cylindrical cavity will be constructed. The governing equations will be taken into the context of the fractional order generalized thermoelasticity theory (Youssef 2010). Laplace transform and direct approach will be used to obtain the solution when the boundary of the cavity is exposed to harmonically heat with constant angular frequency of thermal vibration. The inverse of Laplace transforms will be computed numerically using a method based on Fourier expansion techniques. Some comparisons have been shown in figures to present the effect of the fractional order parameter and the angular frequency of thermal vibration on all the studied felids.展开更多
The present problem is concerned with the deformation of an infinite fibre-reinforced generalized thermoe-lastic medium with hydrostatic initial stress under the influence of mechanical force. The normal mode analysis...The present problem is concerned with the deformation of an infinite fibre-reinforced generalized thermoe-lastic medium with hydrostatic initial stress under the influence of mechanical force. The normal mode analysis is used to obtain the analytical expressions of the displacement components, force stress and temperature distribution. The numerical results are given and presented graphically for Green -Lindsay [4] theory of thermoelasticity. Comparisons are made in the presence and absence of hydrostatic initial stress and anisotropy.展开更多
文摘The equations of generalized thermoelasticity with one relaxation time with variable modulus of elasticity and the thermal conductivity were used to solve a problem of an infinite material with a spherical cavity.The inner surface of the cavity was taken to be traction free and acted upon by a thermal shock to the surface. Laplace transforms techniques were used to obtain the solution by a direct approach.The inverse Laplace transforms was obtained numerically.The temperature,displacement and stress distributions are represented graphically.
文摘In this work, a model of two-temperature generalized thermoelasticity without energy dissipation for an elastic half-space with constant elastic parameters is constructed. The Laplace transform and state-space techniques are used to obtain the general solution for any set of boundary conditions. The general solutions are applied to a specific problem of a half-space subjected to a moving heat source with a constant velocity. The inverse Laplace transforms are computed numerically, and the comparisons are shown in figures to estimate the effects of the heat source velocity and the two-temperature parameter.
文摘The thermoelastic interaction for the three-phase-lag (TPL) heat equation in an isotropic infinite elastic body with a spherical cavity is studied by two-temperature generalized thermoelasticity theory (2TT). The heat conduction equation in the theory of TPL is a hyperbolic partial differential equation with a fourth-order derivative with respect to time. The medium is assumed to be initially quiescent. By the Laplace trans- formation, the fundamental equations are expressed in the form of a vector-matrix differ- ential equation, which is solved by a state-space approach. The general solution obtained is applied to a specific problem, when the boundary of the cavity is subjected to the ther- mal loading (the thermal shock and the ramp-type heating) and the mechanical loading. The inversion of the Laplace transform is carried out by the Fourier series expansion tech- niques. The numerical values of the physical quantity are computed for the copper like ma- terial. Significant dissimilarities between two models (the two-temperature Green-Naghdi theory with energy dissipation (2TGN-III) and two-temperature TPL model (2T3phase)) are shown graphically. The effects of two-temperature and ramping parameters are also studied.
文摘This work is devoted to a study of the induced temperature and stress fields in an elastic half space in context of clas-sical coupled thermoelasticity and generalized thermoelasticity in a unified system of equations. The half space is con-sidered to be made of an isotropic homogeneous thermoelastic material. The bounding plane surface is heated by a non-Gaussian laser beam with pulse duration of 2 ps. An exact solution of the problem is first obtained in Laplace transform space. Since the response is of more interest in the transient state, the inversion of Laplace transforms have been carried numerically. The derived expressions are computed numerically for copper and the results are presented in graphical form.
文摘The present paper deals with thermoelastic problems of finitely long hollow cylinder com-posed of two different materials with axial sym- metry. The medium is traction-free, with neglig-ible body forces and with internal and external heat generations. The governing equations for different theories of the generalized thermoe-lasticity are written in terms of displacement and temperature increment. The exact solution of the problem;using different theories of generalized thermoelasticity;has been deduced. The analytical expressions for displacements, temperature and stresses are found in final forms, and a numerical example has been taken to discuss the effect of the relaxation times. Finally, the results have been illustrated graphi- cally to find the responses of different theories.
文摘This work is dealing with two-temperature generalized thermoelasticity without energy dissipation infinite medium with spherical cavity when the surface of this cavity is subjected to laser heating pulse. The closed form solutions for the two types of temperature, strain, and the stress distribution due to time exponentially decaying laser pulse are constructed. The Laplace transformation method is employed when deriving the governing equations. The inversion of Laplace transform will be obtained numerically by using the Riemann-sum approximation method. The results have been presented in figures to show the effect of the time exponentially decaying laser pulse and the two temperature parameter on all the studied fields.
文摘The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order generalized thermoelasticity with three-phase lag model for functionally graded materials(FGM)(i.e., material with spatially varying material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach.The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an improvement on studying elastic materials.
文摘The present paper is concerned with the investigation of disturbances in'a homogeneous, isotropic elastic medium with generalized thermoelastic diffusion, when a moving source is acting along one of the co-ordinate axis on the boundary of the medium. Eigen value approach is applied to study the disturbance in Laplace-Fourier transform domain for a two dimensional problem. The analytical expressions for displacement components, stresses, temperature field, concentration and chemical potential are obtained in the physical domain by using a numerical technique for the inversion of Laplace transform based on Fourier expansion techniques. These expressions are calculated numerically for a copper like material and depicted graphically. As special cases, the results in generalized thermoelastic and elastic media are obtained. Effect of presence of diffusion is analyzed theoretically and numerically.
文摘This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). The surface of cavity is stress-free and is subjected to a time-dependent thermal shock. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by an eigenvalue approach. Numerical inversion of the transforms is carried out using the Bellman method. Displacement, stress and temperature are computed and presented graphically. It is found that variation in the thermo-physical properties of a material strongly influences the response to loading. A comparative study with a corresponding homogeneous material is also made.
文摘The present problem is concerned with the study of deformation of a rotating generalized thermoelastic solid with an overlying infinite thermoelastic fluid due to different forces acting along the interface under the influence of gravity.The components of displacement,force stress,and temperature distribution are first obtained in Laplace and Fourier domains by applying integral transforms,and then obtained in the physical domain by applying a numerical inversion method.Some particular cases are also discussed in the context of the problem.The results are also presented graphically to show the effect of rotation and gravity in the medium.
基金The project supported by the National Natural Science Foundation of China(10132010 and 10472089)
文摘This paper presents an investigation of temperature, displacement, stress, and induced magnetic field in a half space perfectly-conductive plate. Finite element equations regarding generalized magneto-thermoelasticity problems with two relaxation times (i.e., the G-L theory) are derived using the principle of virtual work. For avoiding numerical complication involved in inverse Laplace and Fourier transformation and low precision thereof, the equations are solved directly in time-domain. As a numerical example, the derived equation is used to investigate the generalized magneto-thermoelastic behavior of a semi-infinite plate under magnetic field and subjecting to a thermal shock loading. The results demonstrate that FEM can faithfully predict the deformation of the plate and the induced magnetic field, and most importantly can reveal the sophisticated second sound effect of heat conduction in two-dimensional generalized thermoelastic solids, which is usually difficult to model by routine transformation methods. A peak can be observed in the distribution of stress and induced front and the magnitude of magnetic field at the heat wave the peak decreases with time, which can not be obtained by transformation methods. The new method can also be used to study generalized piezo-thermoelastic problems.
文摘A mathematical model is elaborated for a thermoelastic infinite body with a spherical cavity.A generalized set of governing equations is formulated in the context of three different models of thermoelasticity:the Biot model,also known as“coupled thermoelasticity”model;the Lord-Shulman model,also referred to as“generalized thermoelasticity with one-relaxation time”approach;and the Green-Lindsay model,also called“generalized thermoelasticity with two-relaxation times”approach.The Adomian’s decomposition method is used to solve the related mathematical problem.The bounding plane of the cavity is subjected to harmonic thermal loading with zero heat flux and strain.Numerical results for the temperature,radial stress,strain,and displacement are represented graphically.It is shown that the angular thermal load and the relaxation times have significant effects on all the studied fields.
文摘The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the impact of thermal loading with energy dissipation is the focus of this research. To model the thermal boundary condition(in the form of thermal conduction),generalized Cattaneo model(GCM) is employed. In the reference configuration, a nonlinear coupled Lord-Shulman-type generalized thermoelasticity formulation using finite strain theory(FST) is developed and the temperature dependency of the thermal conductivity is considered to derive the equations. In order to solve the time-dependent and nonlinear equations, Newmark’s numerical time integration technique and an updated finite element algorithm is applied and to ensure achieving accurate continuity of the results, the Hermitian elements are used instead of Lagrangian’s. The numerical responses for different factors such as input heat flux and nonlinear terms are expressed graphically and their impacts on the system’s reaction are discussed in detail.The results of the study are presented for Green–Lindsay model and the findings are compared with Lord-Shulman model especially with regards to heat wave propagation. It is shown that the nature of the laser’s thermal shock and its geometry are particularly determinative in the final stage of deformation. The research also concluded that employing FST leads to achieving more accuracy in terms of elastic deformations;however, the thermally nonlinear analysis does not change the results markedly. For this reason, the nonlinear theory of deformation is required in laser related reviews, while it is reasonable to ignore the temperature changes compared to the reference temperature in deriving governing equations.
基金Council of Scientific and Industrial Research(CSIR)
文摘The present paper is devoted to the study of Rayleigh wave propagation in a homogeneous, transversely isotropic, thermoelastic diffusive half-space, subject to stress free, thermally insulated/isothermal, and chemical potential boundary conditions in the context of the generalized thermoelastic diffusion theory. The Green-Lindsay(GL) theory is used in the study. In this theory, thermodiffusion and thermodiffusion mechanical relaxations are governed by four different time constants. Secular equations for surface wave propagation in the considered media are derived. Anisotropy and diffusion effects on the phase velocity, attenuation coefficient are graphically presented in order to present the analytical results and make comparison. Some special cases of frequency equations are derived from the present investigation.
文摘The present investigation is concerned with an axi-symmetric problem in the electromagnetic micropolar thermoelastic half-space whose surface is subjected to the mechanical or thermal source. Laplace and Hankel transform techniques are used to solve the problem. Various types of sources are taken to illustrate the utility of the approach. Integral transforms are inverted by using a numerical technique to obtain the components of stresses, temperature distribution, and induced electric and magnetic fields. The expressions of these quantities are illustrated graphically to depict the magnetic effect for two different generalized thermoelasticity theories, i.e., Lord and Shulman (L-S theory) and Green and Lindsay (G-L theory). Some particular interesting cases are also deduced from the present investigation.
文摘In this paper, Rayleigh surface wave is studied at a stress free thermally insulated surface of a two-temperature thermoelastic solid half-space in absence of energy dissipation. The governing equations of two-temperature generalized thermoelastic medium without energy dissipation are solved for surface wave solutions. The appropriate particular solutions are applied to the required boundary conditions to obtain the frequency equation of the Rayleigh wave. Some special cases are also derived. The non-dimensional speed is computed numerically and shown graphically to show the dependence on the frequency and two-temperature parameter.
文摘The purpose of this paper is to study the effect of rotation on the general three-dimensional model of the equations of the generalized thermoelasticity for a homogeneous isotropic elastic half-space solid. The problem is studied in the context of the Green-Naghdi theory of type II (without energy dissipation). The normal mode analysis is used to obtain the expressions for the temperature, thermal stress, strain and displacement. The distributions of variables considered are represented graphically.
文摘In this work, a mathematical model of an elastic material with cylindrical cavity will be constructed. The governing equations will be taken into the context of the fractional order generalized thermoelasticity theory (Youssef 2010). Laplace transform and direct approach will be used to obtain the solution when the boundary of the cavity is exposed to harmonically heat with constant angular frequency of thermal vibration. The inverse of Laplace transforms will be computed numerically using a method based on Fourier expansion techniques. Some comparisons have been shown in figures to present the effect of the fractional order parameter and the angular frequency of thermal vibration on all the studied felids.
文摘The present problem is concerned with the deformation of an infinite fibre-reinforced generalized thermoe-lastic medium with hydrostatic initial stress under the influence of mechanical force. The normal mode analysis is used to obtain the analytical expressions of the displacement components, force stress and temperature distribution. The numerical results are given and presented graphically for Green -Lindsay [4] theory of thermoelasticity. Comparisons are made in the presence and absence of hydrostatic initial stress and anisotropy.