The concept of b-vex and logarithmic b-vex for fuzzy mappings are introduced by relaxing the definition of convexity of a fuzzy mapping. Most of the basic properties of b-vex fuzzy mapping are discussed and establish...The concept of b-vex and logarithmic b-vex for fuzzy mappings are introduced by relaxing the definition of convexity of a fuzzy mapping. Most of the basic properties of b-vex fuzzy mapping are discussed and established for the nondifferentiable case. Necessary and sufficient conditions for b-vex fuzzy mapping are presented. Sevaral important results are given for nonlinear fuzzy optimization problems assuming that the objective and constraint functions are b-vex fuzzy mappings.展开更多
By establishing the concepts of fuzzy approaching set and fuzzy approaching functional mapping and making research on them, a new method for time series prediction is introduced.
In this paper,the pointwise characterizations of fuzzy mappings are given. Based of this definition,we give a few of new properties of fuzzy cardinal numbers.
Up to now, the study on the cardinal number of fuzzy sets has advanced at on pace since it is very hard to give it an appropriate definition. Althrough for it in [1], it is with some harsh terms and is not reasonable ...Up to now, the study on the cardinal number of fuzzy sets has advanced at on pace since it is very hard to give it an appropriate definition. Althrough for it in [1], it is with some harsh terms and is not reasonable as we point out in this paper. In the paper, we give a general definition of fuzzy cardinal numbers. Based on this definition, we not only obtain a large part of results with re spect to cardinal numbers, but also give a few of new properties of fuzzy cardinal numbers.展开更多
In this paper, we first discuss the relationship between the McShane integral and Pettis integral for vector-valued functions. Then by using the embedding theorems for the fuzzy number space E^1, we give a new equival...In this paper, we first discuss the relationship between the McShane integral and Pettis integral for vector-valued functions. Then by using the embedding theorems for the fuzzy number space E^1, we give a new equivalent condition for (K) integrabihty of a fuzzy set-valued mapping F : [a, b] → E^1.展开更多
The real world is filled with uncertainty,vagueness,and imprecision.The concepts we meet in everyday life are vague rather than precise.In real-world situations,if a model requires that conclusions drawn from it have ...The real world is filled with uncertainty,vagueness,and imprecision.The concepts we meet in everyday life are vague rather than precise.In real-world situations,if a model requires that conclusions drawn from it have some bearings on reality,then two major problems immediately arise,viz.real situations are not usually crisp and deterministic;complete descriptions of real systems often require more comprehensive data than human beings could recognize simultaneously,process and understand.Conventional mathematical tools which require all inferences to be exact,are not always efficient to handle imprecisions in a wide variety of practical situations.Following the latter development,a lot of attention has been paid to examining novel L-fuzzy analogues of conventional functional equations and their various applications.In this paper,new coincidence point results for single-valued mappings and an L-fuzzy set-valued map in metric spaces are proposed.Regarding novelty and generality,the obtained invariant point notions are compared with some well-known related concepts via non-trivial examples.It is observed that our principal results subsume and refine some important ones in the corresponding domains.As an application,one of our results is utilized to discussmore general existence conditions for realizing the solutions of a non-integer order inclusion model for COVID-19.展开更多
在文 [7]中 ,史福贵借助于 L - fuzzy关系引入了 L - fuzzy集间的 L - fuzzy映射的概念并借助于其水平截集给出了它的一些等价刻画但没有给出一个 L - fuzzy集的像与逆像的表示。本文的目的就是给出一个 L - fuzzy集的像与逆像的各种等...在文 [7]中 ,史福贵借助于 L - fuzzy关系引入了 L - fuzzy集间的 L - fuzzy映射的概念并借助于其水平截集给出了它的一些等价刻画但没有给出一个 L - fuzzy集的像与逆像的表示。本文的目的就是给出一个 L - fuzzy集的像与逆像的各种等价表示并给出了它们在 L - fuzzy代数中的几个简单应用。展开更多
在文献 [6]中 ,史福贵借助于 L -fuzzy关系定义了 L -fuzzy集间的 L -fuzzy映射并借助于它们的水平截集给出了其若干刻画。在这篇文章中 ,我们将借助于另外的截集给出 L -fuzzy映射的一种新刻画。从而我们也得到了 L -fuzzy单射和 L -fu...在文献 [6]中 ,史福贵借助于 L -fuzzy关系定义了 L -fuzzy集间的 L -fuzzy映射并借助于它们的水平截集给出了其若干刻画。在这篇文章中 ,我们将借助于另外的截集给出 L -fuzzy映射的一种新刻画。从而我们也得到了 L -fuzzy单射和 L -fuzzy满射的新刻画。展开更多
A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. ...A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate.展开更多
By using the concept of H differentiability due to Puri and Ralescu,we consider the Cauchy problem of fuzzy differential equation for the fuzzy set valued mappings of a real variable whose values are normal, convex,...By using the concept of H differentiability due to Puri and Ralescu,we consider the Cauchy problem of fuzzy differential equation for the fuzzy set valued mappings of a real variable whose values are normal, convex, upper semicontinuous and compact supporting fuzzy sets in R n , and obtain the existence and uniqueness theorem for a solution on the closed subset of ( E n,D ).展开更多
The purpose of this study is to reduce the uncertainty in the calculation process on hesitant fuzzy sets(HFSs).The innovation of this study is to unify the cardinal numbers of hesitant fuzzy elements(HFEs)in a special...The purpose of this study is to reduce the uncertainty in the calculation process on hesitant fuzzy sets(HFSs).The innovation of this study is to unify the cardinal numbers of hesitant fuzzy elements(HFEs)in a special way.Firstly,a probability density function is assigned for any given HFE.Thereafter,equal-probability transformation is introduced to transform HFEs with different cardinal numbers on the condition into the same probability density function.The characteristic of this transformation is that the higher the consistency of the membership degrees in HFEs,the higher the credibility of the mentioned membership degrees is,then,the bigger the probability density values for them are.According to this transformation technique,a set of novel distance measures on HFSs is provided.Finally,an illustrative example of intersection traffic control is introduced to show the usefulness of the given distance measures.The example also shows that this study is a good complement to operation theories on HFSs.展开更多
Despite half a century of fuzzy sets and fuzzy logic progress, as fuzzy sets address complex and uncertain information through the lens of human knowledge and subjectivity, more progress is needed in the semantics of ...Despite half a century of fuzzy sets and fuzzy logic progress, as fuzzy sets address complex and uncertain information through the lens of human knowledge and subjectivity, more progress is needed in the semantics of fuzzy sets and in exploring the multi-modal aspect of fuzzy logic due to the different cognitive, emotional and behavioral angles of assessing truth. We lay here the foundations of a postmodern fuzzy set and fuzzy logic theory addressing these issues by deconstructing fuzzy truth values and fuzzy set membership functions to re-capture the human knowledge and subjectivity structure in membership function evaluations. We formulate a fractal multi-modal logic of Kabbalah which integrates the cognitive, emotional and behavioral levels of humanistic systems into epistemic and modal, deontic and doxastic and dynamic multi-modal logic. This is done by creating a fractal multi-modal Kabbalah possible worlds semantic frame of Kripke model type. The Kabbalah possible worlds semantic frame integrates together both the multi-modal logic aspects and their Kripke possible worlds model. We will not focus here on modal operators and axiom sets. We constructively define a fractal multi-modal Kabbalistic L-fuzzy set as the central concept of the postmodern fuzzy set theory based on Kabbalah logic and semantics.展开更多
In this paper, we introduce the notion of intuitionistic fuzzy α-generalized closed sets in intuitionistic fuzzy minimal structure spaces and investigate some of their properties. Further, we introduce and study the ...In this paper, we introduce the notion of intuitionistic fuzzy α-generalized closed sets in intuitionistic fuzzy minimal structure spaces and investigate some of their properties. Further, we introduce and study the concept of intuitionistic fuzzy α-generalized minimal continuous functions.展开更多
文摘The concept of b-vex and logarithmic b-vex for fuzzy mappings are introduced by relaxing the definition of convexity of a fuzzy mapping. Most of the basic properties of b-vex fuzzy mapping are discussed and established for the nondifferentiable case. Necessary and sufficient conditions for b-vex fuzzy mapping are presented. Sevaral important results are given for nonlinear fuzzy optimization problems assuming that the objective and constraint functions are b-vex fuzzy mappings.
文摘By establishing the concepts of fuzzy approaching set and fuzzy approaching functional mapping and making research on them, a new method for time series prediction is introduced.
文摘In this paper,the pointwise characterizations of fuzzy mappings are given. Based of this definition,we give a few of new properties of fuzzy cardinal numbers.
文摘Up to now, the study on the cardinal number of fuzzy sets has advanced at on pace since it is very hard to give it an appropriate definition. Althrough for it in [1], it is with some harsh terms and is not reasonable as we point out in this paper. In the paper, we give a general definition of fuzzy cardinal numbers. Based on this definition, we not only obtain a large part of results with re spect to cardinal numbers, but also give a few of new properties of fuzzy cardinal numbers.
文摘In this paper, we first discuss the relationship between the McShane integral and Pettis integral for vector-valued functions. Then by using the embedding theorems for the fuzzy number space E^1, we give a new equivalent condition for (K) integrabihty of a fuzzy set-valued mapping F : [a, b] → E^1.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia has funded this project under Grant Number(G:220-247-1443).
文摘The real world is filled with uncertainty,vagueness,and imprecision.The concepts we meet in everyday life are vague rather than precise.In real-world situations,if a model requires that conclusions drawn from it have some bearings on reality,then two major problems immediately arise,viz.real situations are not usually crisp and deterministic;complete descriptions of real systems often require more comprehensive data than human beings could recognize simultaneously,process and understand.Conventional mathematical tools which require all inferences to be exact,are not always efficient to handle imprecisions in a wide variety of practical situations.Following the latter development,a lot of attention has been paid to examining novel L-fuzzy analogues of conventional functional equations and their various applications.In this paper,new coincidence point results for single-valued mappings and an L-fuzzy set-valued map in metric spaces are proposed.Regarding novelty and generality,the obtained invariant point notions are compared with some well-known related concepts via non-trivial examples.It is observed that our principal results subsume and refine some important ones in the corresponding domains.As an application,one of our results is utilized to discussmore general existence conditions for realizing the solutions of a non-integer order inclusion model for COVID-19.
文摘在文 [7]中 ,史福贵借助于 L - fuzzy关系引入了 L - fuzzy集间的 L - fuzzy映射的概念并借助于其水平截集给出了它的一些等价刻画但没有给出一个 L - fuzzy集的像与逆像的表示。本文的目的就是给出一个 L - fuzzy集的像与逆像的各种等价表示并给出了它们在 L - fuzzy代数中的几个简单应用。
文摘A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate.
文摘By using the concept of H differentiability due to Puri and Ralescu,we consider the Cauchy problem of fuzzy differential equation for the fuzzy set valued mappings of a real variable whose values are normal, convex, upper semicontinuous and compact supporting fuzzy sets in R n , and obtain the existence and uniqueness theorem for a solution on the closed subset of ( E n,D ).
基金supported by Shanghai Pujiang Program (No.2019PJC062)the Natural Science Foundation of Shandong Province (No.ZR2021MG003)the Research Project on Undergraduate Teaching Reform of Higher Education in Shandong Province (No.Z2021046).
文摘The purpose of this study is to reduce the uncertainty in the calculation process on hesitant fuzzy sets(HFSs).The innovation of this study is to unify the cardinal numbers of hesitant fuzzy elements(HFEs)in a special way.Firstly,a probability density function is assigned for any given HFE.Thereafter,equal-probability transformation is introduced to transform HFEs with different cardinal numbers on the condition into the same probability density function.The characteristic of this transformation is that the higher the consistency of the membership degrees in HFEs,the higher the credibility of the mentioned membership degrees is,then,the bigger the probability density values for them are.According to this transformation technique,a set of novel distance measures on HFSs is provided.Finally,an illustrative example of intersection traffic control is introduced to show the usefulness of the given distance measures.The example also shows that this study is a good complement to operation theories on HFSs.
文摘Despite half a century of fuzzy sets and fuzzy logic progress, as fuzzy sets address complex and uncertain information through the lens of human knowledge and subjectivity, more progress is needed in the semantics of fuzzy sets and in exploring the multi-modal aspect of fuzzy logic due to the different cognitive, emotional and behavioral angles of assessing truth. We lay here the foundations of a postmodern fuzzy set and fuzzy logic theory addressing these issues by deconstructing fuzzy truth values and fuzzy set membership functions to re-capture the human knowledge and subjectivity structure in membership function evaluations. We formulate a fractal multi-modal logic of Kabbalah which integrates the cognitive, emotional and behavioral levels of humanistic systems into epistemic and modal, deontic and doxastic and dynamic multi-modal logic. This is done by creating a fractal multi-modal Kabbalah possible worlds semantic frame of Kripke model type. The Kabbalah possible worlds semantic frame integrates together both the multi-modal logic aspects and their Kripke possible worlds model. We will not focus here on modal operators and axiom sets. We constructively define a fractal multi-modal Kabbalistic L-fuzzy set as the central concept of the postmodern fuzzy set theory based on Kabbalah logic and semantics.
文摘In this paper, we introduce the notion of intuitionistic fuzzy α-generalized closed sets in intuitionistic fuzzy minimal structure spaces and investigate some of their properties. Further, we introduce and study the concept of intuitionistic fuzzy α-generalized minimal continuous functions.