A Bloom filter is a space-efficient data structure used for concisely representing a set as well as membership queries at the expense of introducing false positive. In this paper, we propose the L-priorities Bloom fil...A Bloom filter is a space-efficient data structure used for concisely representing a set as well as membership queries at the expense of introducing false positive. In this paper, we propose the L-priorities Bloom filter (LPBF) as a new member of the Bloom filter (BF) family, it uses a limited multidimensional bit space matrix to replace the bit vector of standard bloom filters in order to support different priorities for the elements of a set. We demonstrate the time and space complexity, especially the false positive rate of LPBF. Furthermore, we also present a detailed practical evaluation of the false positive rate achieved by LPBF. The results show that LPBF performs better than standard BFs with respect to false positive rate.展开更多
基金supported by Project of Plan for Science and Technology Development of Jilin Province (No. 20101504)Project of Research of Science and Technology for the 11th Five-year Plan of Jilin Education Department (No. 2009604)
文摘A Bloom filter is a space-efficient data structure used for concisely representing a set as well as membership queries at the expense of introducing false positive. In this paper, we propose the L-priorities Bloom filter (LPBF) as a new member of the Bloom filter (BF) family, it uses a limited multidimensional bit space matrix to replace the bit vector of standard bloom filters in order to support different priorities for the elements of a set. We demonstrate the time and space complexity, especially the false positive rate of LPBF. Furthermore, we also present a detailed practical evaluation of the false positive rate achieved by LPBF. The results show that LPBF performs better than standard BFs with respect to false positive rate.