Bioaerosol emissions from animal feeding operation (AFO) facilities are of increasing interest due to the magnitude of the emissions and their potential health effect on local communities. There is limited information...Bioaerosol emissions from animal feeding operation (AFO) facilities are of increasing interest due to the magnitude of the emissions and their potential health effect on local communities. There is limited information about fate and transport of AFO bioaerosol emissions. In this study, concentrations of airborne bacteria and fungi were measured at four ambient stations in four wind directions surrounding an egg production farm through winter, spring and summer using Andersen six-stage samplers. Mean concentrations of ambient bacteria and fungi ranged from 8.7 × 102 CFU m-3 to 1.3 × 103 CFU m-3 and from 2.8 × 102 CFU m-3 to 1.4 × 103 CFU m-3, respectively. Ambient bacterial concentrations were not significantly different over the seasons, while ambient fungal concentrations were the highest in summer and the lowest in winter. There were significant differences between downwind and upwind bacterial concentrations (p < 0.0001). Downwind bacterial and fungal concentrations responded differently to the influencing factors. Bacterial concentrations were quadratically correlated with wind vector (combined effects of wind speed and direction) and emission rate, were positively correlated with temperature, and were negatively correlated with solar radiation. Fungal concentrations were positively correlated with temperature, RH, and emission rate, and were negatively correlated with wind vector.展开更多
Fecal indicator bacteria concentrations, a measure of water pollution, do not remain static in the environment and can fluctuate both temporally and spatially. Diurnal variation, partially resulting from the effects o...Fecal indicator bacteria concentrations, a measure of water pollution, do not remain static in the environment and can fluctuate both temporally and spatially. Diurnal variation, partially resulting from the effects of UV light, may decrease the density of E. coli, resulting in lower concentrations in the afternoon. Previous studies conducted at 63rd Street Beach in Chicago, IL [1] and North Beach in Racine, WI [2] demonstrated significant diurnal variation using an E. coli standard and culture-based assays. Subsequent studies conducted at sewage-impacted Great Lakes beaches employing molecular assays (qPCR) found that the signal remained stable;it is unknown whether a similar scenario exists at non-sewage impacted beaches. During the summer of 2011, surface water samples were collected in the morning and afternoon (0700 and 1200) and analyzed by both IDEXX/Colilert and qPCR/BioGx SmartBeads/OmniMix HS to determine if temporal variation in E. coli was occurring (n = 29/23, culture/qPCR). Analysis of log-converted data (independent t-test/one-way ANOVA) indicated no significant difference in mean E. coli concentration as determined by morning and afternoon sampling via either method (Colilert/qPCR, p = 0.49/0.09, α = 0.05). Although not statistically significant (p = 0.09) there were 5 of 23 (22%) instances where afternoon qPCR values exceeded morning counterparts;two (10%) when culture-based assays did not show a similar response. The utility of rapid assays lies in their ability to generate results prior to beach opening;temporal or event-based fluctuations should be considered when using molecular assays at non-sewage impacted beaches for regulatory purposes.展开更多
The environmental regulation of plcoplankton distribution in the northern South China Sea was examined In winter and summer of 2004. The average abundance of Synechococcus, Prochlorococcus, and heterotrophlc bacteria ...The environmental regulation of plcoplankton distribution in the northern South China Sea was examined In winter and summer of 2004. The average abundance of Synechococcus, Prochlorococcus, and heterotrophlc bacteria was lower In winter (30, 21, and 780×10^3 cells/cm^3, respectively) than In summer (53, 85, and 1 090×10^3 cells/cm^3, respectively), but the seasonal pattern was opposite for plcoeukaryotlc phytoplankton (4 500 and 3 200 cells/cm^3 In winter and summer, respectively). Synechococcus, picoeukaryotes, and bacteria were most abundant in the nutrient-rich coastal zone and continental shelf, but Prochlorococcus was most abundant In the continental slope and open ocean. The vertical distribution of each photosynthetic group and heterotrophlc bacteria changed between the two seasons. Synechococcus populations with apparently different phycoerythrobilin content occurred at many stations In the summer. In addition, two different populations of Prochlorococcus were found: (i) small, weakly fluorescing cells in the surface layer; and (ii) larger, strongly fluorescent cells In the deep layer. The distribution pattern of photosynthetic plcoplankton and heterotrophlc bacteria depends on environmental effects and their ecophyslologlcal differences. The distribution of Synechococcus appeared to be related to nutrient availability, whereas the distribution of Prochlorococcus appeared to be limited by temperature. Synechococcus was the only plcophytoplankton with a consistent strong relationship with bacteria.展开更多
文摘Bioaerosol emissions from animal feeding operation (AFO) facilities are of increasing interest due to the magnitude of the emissions and their potential health effect on local communities. There is limited information about fate and transport of AFO bioaerosol emissions. In this study, concentrations of airborne bacteria and fungi were measured at four ambient stations in four wind directions surrounding an egg production farm through winter, spring and summer using Andersen six-stage samplers. Mean concentrations of ambient bacteria and fungi ranged from 8.7 × 102 CFU m-3 to 1.3 × 103 CFU m-3 and from 2.8 × 102 CFU m-3 to 1.4 × 103 CFU m-3, respectively. Ambient bacterial concentrations were not significantly different over the seasons, while ambient fungal concentrations were the highest in summer and the lowest in winter. There were significant differences between downwind and upwind bacterial concentrations (p < 0.0001). Downwind bacterial and fungal concentrations responded differently to the influencing factors. Bacterial concentrations were quadratically correlated with wind vector (combined effects of wind speed and direction) and emission rate, were positively correlated with temperature, and were negatively correlated with solar radiation. Fungal concentrations were positively correlated with temperature, RH, and emission rate, and were negatively correlated with wind vector.
文摘Fecal indicator bacteria concentrations, a measure of water pollution, do not remain static in the environment and can fluctuate both temporally and spatially. Diurnal variation, partially resulting from the effects of UV light, may decrease the density of E. coli, resulting in lower concentrations in the afternoon. Previous studies conducted at 63rd Street Beach in Chicago, IL [1] and North Beach in Racine, WI [2] demonstrated significant diurnal variation using an E. coli standard and culture-based assays. Subsequent studies conducted at sewage-impacted Great Lakes beaches employing molecular assays (qPCR) found that the signal remained stable;it is unknown whether a similar scenario exists at non-sewage impacted beaches. During the summer of 2011, surface water samples were collected in the morning and afternoon (0700 and 1200) and analyzed by both IDEXX/Colilert and qPCR/BioGx SmartBeads/OmniMix HS to determine if temporal variation in E. coli was occurring (n = 29/23, culture/qPCR). Analysis of log-converted data (independent t-test/one-way ANOVA) indicated no significant difference in mean E. coli concentration as determined by morning and afternoon sampling via either method (Colilert/qPCR, p = 0.49/0.09, α = 0.05). Although not statistically significant (p = 0.09) there were 5 of 23 (22%) instances where afternoon qPCR values exceeded morning counterparts;two (10%) when culture-based assays did not show a similar response. The utility of rapid assays lies in their ability to generate results prior to beach opening;temporal or event-based fluctuations should be considered when using molecular assays at non-sewage impacted beaches for regulatory purposes.
基金Supported by the National Natural Science Foundation of China (90211021, 40506032).Acknowledgements The authors sincerely thank Dr WKW Li (Biological 0ceanography Section, Bedford Institute of 0ceanography, Department of Fisheries and 0ceans, Dartmouth, Nova Scotia, Canada) for helpful advice on the paper and for sharing hydrological and chemical data from synchronous observations by Xiamen University and the South China Sea Branch, S0A. The authors also thank Dr Xin Peng in our team for help with sample preservation.
文摘The environmental regulation of plcoplankton distribution in the northern South China Sea was examined In winter and summer of 2004. The average abundance of Synechococcus, Prochlorococcus, and heterotrophlc bacteria was lower In winter (30, 21, and 780×10^3 cells/cm^3, respectively) than In summer (53, 85, and 1 090×10^3 cells/cm^3, respectively), but the seasonal pattern was opposite for plcoeukaryotlc phytoplankton (4 500 and 3 200 cells/cm^3 In winter and summer, respectively). Synechococcus, picoeukaryotes, and bacteria were most abundant in the nutrient-rich coastal zone and continental shelf, but Prochlorococcus was most abundant In the continental slope and open ocean. The vertical distribution of each photosynthetic group and heterotrophlc bacteria changed between the two seasons. Synechococcus populations with apparently different phycoerythrobilin content occurred at many stations In the summer. In addition, two different populations of Prochlorococcus were found: (i) small, weakly fluorescing cells in the surface layer; and (ii) larger, strongly fluorescent cells In the deep layer. The distribution pattern of photosynthetic plcoplankton and heterotrophlc bacteria depends on environmental effects and their ecophyslologlcal differences. The distribution of Synechococcus appeared to be related to nutrient availability, whereas the distribution of Prochlorococcus appeared to be limited by temperature. Synechococcus was the only plcophytoplankton with a consistent strong relationship with bacteria.