This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulatio...This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.展开更多
The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic fra...The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.展开更多
In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power ...In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power flow in the finite plate are calculated by the Mindlin plate theory (MPT) and classic plate theory (CPT).To satisfy the boundary conditions and continuous conditions at the coupled junction of the finite L-shaped plate,the near-field and far-field waves are entirely contained in the wave approach.The in-plane longitudinal and shear waves are also considered.The results indicate that the vibratory power flow based on the MPT is different from that based on the CPT not only at high frequencies but also at low and medium frequencies.The influence of the plate thickness on the vibrational power flow is investigated.From the results it is seen that the shear and rotary inertia correction of the MPT can influence the active and reactive power at the junction of the L-shaped plate not only at high frequencies but also at low and medium frequencies.Furthermore,the effects of structural damping on the active and reactive power flow at the junction are also analyzed.展开更多
Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical proper...Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.展开更多
L-shaped plates have become an important focuses in structural vibration research. To determine their vibration characteristics, this paper applied a mobility power flow method. Firstly, the L-shaped plate was divided...L-shaped plates have become an important focuses in structural vibration research. To determine their vibration characteristics, this paper applied a mobility power flow method. Firstly, the L-shaped plate was divided into two substructures to simplify analysis. The coupled bending moment was then deduced by applying a continuous vibration property on the common edge. Next, the response on any point of the plate and the input and transmitted power flow formulas were calculated. Numerical simulations showed the distribution of the coupled bending moment and the response of the whole structure. The validity of this method was verified by the SEA approach.展开更多
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven...A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.展开更多
With the completion of the Qinghai-Tibetan Railway,economic development of related areas has been greatly accelerated.This,in return,calls for building or upgrading more roadways,especially high-grade roadways.In cold...With the completion of the Qinghai-Tibetan Railway,economic development of related areas has been greatly accelerated.This,in return,calls for building or upgrading more roadways,especially high-grade roadways.In cold regions,the thawing of permafrost can induce settlement damage of and even failure to railway (or roadway) embankments.Thermosyphons (self-powered refrigera-tion devices that are used to help keep the permafrost cool) have proved effective in mitigating thaw settlement by maintaining the thermal stability of the embankments.However,for high-grade roadway embankments of great width,stabilizing or cooling ef-fects of traditional geotechnological measures may be limited.To enhance the cooling effect of thermosyphons,an L-shaped thermosyphon was designed.A laboratory test was carried out to study the combined cooling effect of the L-shaped thermosyphon and thermal insulation applying to roadbed construction.The angle between the evaporator and condenser sections of the L-shaped thermosyphon is 134 degrees,and the L-shaped thermosyphon was inserted into the soil at an angle of 5 degrees with the road surface.The tested results show that the L-shaped thermosyphon is effective in removing heat from a roadway in winter.When the ambient air temperature is lower than the soil temperature,the thermosyphon is active and extracts the heat in the soil around it.When the ambient air temperature is higher than the soil temperature,the thermosyphon is inactive,and no heat is in-jected into the soil through the L-shaped thermosyphon.Compared to embankments with straight thermosyphons,the inner parts of the embankments with L-shaped thermosyphons were significantly cooled.It is hoped that the present study would be useful to the application of L-shaped thermosyphons in the construction of high-grade roadways in cold regions.展开更多
Investigations of the seismic behavior of steel reinforced concrete L-shaped columns under constant axial compression and cycled bending-shear-torsion load were performed.Six specimens,which considered two parameters,...Investigations of the seismic behavior of steel reinforced concrete L-shaped columns under constant axial compression and cycled bending-shear-torsion load were performed.Six specimens,which considered two parameters,i.e.,the moment ratio of torsion to bending(γ)and the aspect ratio(column length-to-depth ratio,φ),were prepared for the experiment.In this study,the failure process,torsion-displacement hysteresis curves,and flexure-displacement hysteresis curves were obtained.The failure characteristics,mechanical behavior of specimens such as the failure patterns,hysteresis curves,rigidity degradation,ductility and energy dissipation,are analyzed.The experimental research indicated that the major failures of the specimens were bending failure,bending-shear failure and bending-torsion failure as the moment ratio of torsion to bending(γ)increased.The torsion-displacement hysteresis curves were pinched in the middle,formed a slip platform,and the phenomenon of“load drop”occurred after the peak load.The bending-displacement hysteresis curves were plump,which showed that bending capacity of the specimen was better than its torsion capacity.Additionally,the energy dissipation of the specimen was dominated by torsion in the early stage and ultimately governed by the bending moment in the later phase.Test results also indicated that the displacement ductility coefficient and interstory rotation angle of the failure point were less than 3.0 and 1/50,respectively,which means the test specimen performance does not meet the requirement of the Chinese Code for Seismic Design of Buildings(GB 50011-2014)in this respect.展开更多
A single layer triangular patch antenna fed by an L-shaped probe was investigated numerically by using FDTD (Finite Difference Time Domain) method. It achieves >40% impedance bandwidth (VSWR<2) and stable radiat...A single layer triangular patch antenna fed by an L-shaped probe was investigated numerically by using FDTD (Finite Difference Time Domain) method. It achieves >40% impedance bandwidth (VSWR<2) and stable radiation pattern across the passband. The triangular patch antenna with two orientations of L-shaped probe has almost the same characteristics, such as impedance bandwidth and radiation pattern. The bandwidth vs feeding position was also investigated, the broadband characteristic can be observed when the feeding position is only in a small segment along the centerline.展开更多
The behavior of L-Shaped RC (reinforced concrete) shear walls was investigated in the Erciyes University Earthquake Investigation Laboratory under the influence of constant axial load together with reversed cyclic l...The behavior of L-Shaped RC (reinforced concrete) shear walls was investigated in the Erciyes University Earthquake Investigation Laboratory under the influence of constant axial load together with reversed cyclic lateral load. The objective of this study was to evaluate the effects of cross sectional dimensions on the behavior of L-shaped structural members and to assess their earthquake performance. In order to investigate L-shaped RC structural members, the special experiment setup and four type of 1/2 scaled specimens which have different aspect ratio were constructed. The specimens were loaded in line with the major principal axes direction laterally. Axial load ratio was 0.1 and cross section height to thickness ratios were' 3:1, 5:1, 8:1, 10:1. Cross section thickness was 120 mm which corresponds to (360:120), (600:120), (960:120), (1,200:120) wall legs cross sectional dimensions in mm. The specimens height was 1,500 mm, together with upper and lower slabs overall height was 2,000 mm. Concrete compression strength was 30 N/mm2, steel yield stress 420 N/mm2 and vertical reinforcement ratio was 1% for all specimens. According to the test results, the specimen of which the aspect ratio is 3 (360:120) has shown column behavior, the specimen of which the aspect ratio is 5 (600:120) has shown slender wall behavior and last two specimens of which the aspect ratios are 8 (960:120) and 10 (1,200:120) have shown squat wall behavior. When considering the cracking patterns and hysteretic behavior, since the aspect ratio 8, the specimens show flexure-shear interaction behavior and prone to brittle failure.展开更多
Two-stage problem of stochastic convex programming with fuzzy probability distribution is studied in this paper. Multicut L-shaped algorithm is proposed to solve the problem based on the fuzzy cutting and the minimax ...Two-stage problem of stochastic convex programming with fuzzy probability distribution is studied in this paper. Multicut L-shaped algorithm is proposed to solve the problem based on the fuzzy cutting and the minimax rule. Theorem of the convergence for the algorithm is proved. Finally, a numerical example about two-stage convex recourse problem shows the essential character and the efficiency.展开更多
目的比较internal brace(IB)与带线锚钉通过改良Broström术治疗慢性踝关节不稳的临床疗效。方法回顾性分析2019年5月至2022年2月在桂林市人民医院本院关节骨科行手术治疗的42例慢性踝关节外侧不稳患者资料,根据距腓前韧带修补所用...目的比较internal brace(IB)与带线锚钉通过改良Broström术治疗慢性踝关节不稳的临床疗效。方法回顾性分析2019年5月至2022年2月在桂林市人民医院本院关节骨科行手术治疗的42例慢性踝关节外侧不稳患者资料,根据距腓前韧带修补所用材料的不同将患者分为IB组(19例)和带线锚钉组(23例)。比较两组患者一般资料、手术时间、并发症发生率、术后完全负重行走时间、术后恢复跑步的时间、美国足踝外科协会(American Orthopedic Foot and Ankle Society,AOFAS)踝-后足功能评分、视觉模拟评分法(visual analog scale,VAS)评分。结果所有患者术后均获得随访,随访时间12~18个月,平均(13.8±5.3)个月。两组患者基线资料差异无统计学意义(P>0.05);两组各有1例术口拆线后再出现渗液,换药后愈合;两组各有2例术口区域感觉障碍,除IB组有1例术后半年仍未完全恢复外,其余3例术后2~3个月恢复;IB组患者术后6周随访时AOFAS评分优于带线锚钉组,差异有统计学意义(t=2.239,P=0.025),但术后6周时VAS评分比较差异无统计学意义(t=0.308,P=0.760);末次随访时AOFAS评分和VAS评分比较,两组之间差异无统计学意义(t=0.045,P=0.965;t=0.203,P=0.840);IB组术后完全负重行走时间、术后恢复跑步的时间显著早于带线锚钉组,差异有统计学意义(t=26.566,P<0.01;t=4.838,P<0.01)。结论IB与带线锚钉通过改良Broström术开放治疗慢性踝关节不稳的临床疗效满意,且使用IB在早期康复和重返运动方面优于带线锚钉。展开更多
基金National Natural Science Foundation of China under Grant No.51978184。
文摘This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.
基金gratefully the China Scholarship Council for providing a PhD Scholarship(CSC No.201906690049).
文摘The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.
基金supported by the National Basic Research Programof China (2011CB711102)the National Natural Science Foundation of China (10672017,11002045)
文摘In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power flow in the finite plate are calculated by the Mindlin plate theory (MPT) and classic plate theory (CPT).To satisfy the boundary conditions and continuous conditions at the coupled junction of the finite L-shaped plate,the near-field and far-field waves are entirely contained in the wave approach.The in-plane longitudinal and shear waves are also considered.The results indicate that the vibratory power flow based on the MPT is different from that based on the CPT not only at high frequencies but also at low and medium frequencies.The influence of the plate thickness on the vibrational power flow is investigated.From the results it is seen that the shear and rotary inertia correction of the MPT can influence the active and reactive power at the junction of the L-shaped plate not only at high frequencies but also at low and medium frequencies.Furthermore,the effects of structural damping on the active and reactive power flow at the junction are also analyzed.
基金Foundation of Key Laboratory of Coast Civil Structure Safety (Tianjin University),Ministry of EducationChinese Program for New Century Excellent Talents in University+1 种基金Seed Foundation of Tianjin UniversitySeed Foundation of Xinjiang University
文摘Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.
基金Supported by the National Natural Science Foundation under Grant No. 50675177.
文摘L-shaped plates have become an important focuses in structural vibration research. To determine their vibration characteristics, this paper applied a mobility power flow method. Firstly, the L-shaped plate was divided into two substructures to simplify analysis. The coupled bending moment was then deduced by applying a continuous vibration property on the common edge. Next, the response on any point of the plate and the input and transmitted power flow formulas were calculated. Numerical simulations showed the distribution of the coupled bending moment and the response of the whole structure. The validity of this method was verified by the SEA approach.
文摘A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.
基金supported by National Natural Science Foundation of China (Grant No.40730736 and No.40601023)the National Hi-Tech Research and Development Plan (2008AA11Z103)the Western Project Program of the Chinese Academy of Sciences (No.KZCX2-XB2-10)
文摘With the completion of the Qinghai-Tibetan Railway,economic development of related areas has been greatly accelerated.This,in return,calls for building or upgrading more roadways,especially high-grade roadways.In cold regions,the thawing of permafrost can induce settlement damage of and even failure to railway (or roadway) embankments.Thermosyphons (self-powered refrigera-tion devices that are used to help keep the permafrost cool) have proved effective in mitigating thaw settlement by maintaining the thermal stability of the embankments.However,for high-grade roadway embankments of great width,stabilizing or cooling ef-fects of traditional geotechnological measures may be limited.To enhance the cooling effect of thermosyphons,an L-shaped thermosyphon was designed.A laboratory test was carried out to study the combined cooling effect of the L-shaped thermosyphon and thermal insulation applying to roadbed construction.The angle between the evaporator and condenser sections of the L-shaped thermosyphon is 134 degrees,and the L-shaped thermosyphon was inserted into the soil at an angle of 5 degrees with the road surface.The tested results show that the L-shaped thermosyphon is effective in removing heat from a roadway in winter.When the ambient air temperature is lower than the soil temperature,the thermosyphon is active and extracts the heat in the soil around it.When the ambient air temperature is higher than the soil temperature,the thermosyphon is inactive,and no heat is in-jected into the soil through the L-shaped thermosyphon.Compared to embankments with straight thermosyphons,the inner parts of the embankments with L-shaped thermosyphons were significantly cooled.It is hoped that the present study would be useful to the application of L-shaped thermosyphons in the construction of high-grade roadways in cold regions.
基金National Natural Science Foundation of China under Grant Nos.51268004 and 51578163Natural Science Foundation of Guangxi under Grant No 2016GXNSFDA380032Bagui Scholar Program of Guangxi under Grant No:[2019]79。
文摘Investigations of the seismic behavior of steel reinforced concrete L-shaped columns under constant axial compression and cycled bending-shear-torsion load were performed.Six specimens,which considered two parameters,i.e.,the moment ratio of torsion to bending(γ)and the aspect ratio(column length-to-depth ratio,φ),were prepared for the experiment.In this study,the failure process,torsion-displacement hysteresis curves,and flexure-displacement hysteresis curves were obtained.The failure characteristics,mechanical behavior of specimens such as the failure patterns,hysteresis curves,rigidity degradation,ductility and energy dissipation,are analyzed.The experimental research indicated that the major failures of the specimens were bending failure,bending-shear failure and bending-torsion failure as the moment ratio of torsion to bending(γ)increased.The torsion-displacement hysteresis curves were pinched in the middle,formed a slip platform,and the phenomenon of“load drop”occurred after the peak load.The bending-displacement hysteresis curves were plump,which showed that bending capacity of the specimen was better than its torsion capacity.Additionally,the energy dissipation of the specimen was dominated by torsion in the early stage and ultimately governed by the bending moment in the later phase.Test results also indicated that the displacement ductility coefficient and interstory rotation angle of the failure point were less than 3.0 and 1/50,respectively,which means the test specimen performance does not meet the requirement of the Chinese Code for Seismic Design of Buildings(GB 50011-2014)in this respect.
文摘A single layer triangular patch antenna fed by an L-shaped probe was investigated numerically by using FDTD (Finite Difference Time Domain) method. It achieves >40% impedance bandwidth (VSWR<2) and stable radiation pattern across the passband. The triangular patch antenna with two orientations of L-shaped probe has almost the same characteristics, such as impedance bandwidth and radiation pattern. The bandwidth vs feeding position was also investigated, the broadband characteristic can be observed when the feeding position is only in a small segment along the centerline.
文摘The behavior of L-Shaped RC (reinforced concrete) shear walls was investigated in the Erciyes University Earthquake Investigation Laboratory under the influence of constant axial load together with reversed cyclic lateral load. The objective of this study was to evaluate the effects of cross sectional dimensions on the behavior of L-shaped structural members and to assess their earthquake performance. In order to investigate L-shaped RC structural members, the special experiment setup and four type of 1/2 scaled specimens which have different aspect ratio were constructed. The specimens were loaded in line with the major principal axes direction laterally. Axial load ratio was 0.1 and cross section height to thickness ratios were' 3:1, 5:1, 8:1, 10:1. Cross section thickness was 120 mm which corresponds to (360:120), (600:120), (960:120), (1,200:120) wall legs cross sectional dimensions in mm. The specimens height was 1,500 mm, together with upper and lower slabs overall height was 2,000 mm. Concrete compression strength was 30 N/mm2, steel yield stress 420 N/mm2 and vertical reinforcement ratio was 1% for all specimens. According to the test results, the specimen of which the aspect ratio is 3 (360:120) has shown column behavior, the specimen of which the aspect ratio is 5 (600:120) has shown slender wall behavior and last two specimens of which the aspect ratios are 8 (960:120) and 10 (1,200:120) have shown squat wall behavior. When considering the cracking patterns and hysteretic behavior, since the aspect ratio 8, the specimens show flexure-shear interaction behavior and prone to brittle failure.
文摘Two-stage problem of stochastic convex programming with fuzzy probability distribution is studied in this paper. Multicut L-shaped algorithm is proposed to solve the problem based on the fuzzy cutting and the minimax rule. Theorem of the convergence for the algorithm is proved. Finally, a numerical example about two-stage convex recourse problem shows the essential character and the efficiency.
文摘目的比较internal brace(IB)与带线锚钉通过改良Broström术治疗慢性踝关节不稳的临床疗效。方法回顾性分析2019年5月至2022年2月在桂林市人民医院本院关节骨科行手术治疗的42例慢性踝关节外侧不稳患者资料,根据距腓前韧带修补所用材料的不同将患者分为IB组(19例)和带线锚钉组(23例)。比较两组患者一般资料、手术时间、并发症发生率、术后完全负重行走时间、术后恢复跑步的时间、美国足踝外科协会(American Orthopedic Foot and Ankle Society,AOFAS)踝-后足功能评分、视觉模拟评分法(visual analog scale,VAS)评分。结果所有患者术后均获得随访,随访时间12~18个月,平均(13.8±5.3)个月。两组患者基线资料差异无统计学意义(P>0.05);两组各有1例术口拆线后再出现渗液,换药后愈合;两组各有2例术口区域感觉障碍,除IB组有1例术后半年仍未完全恢复外,其余3例术后2~3个月恢复;IB组患者术后6周随访时AOFAS评分优于带线锚钉组,差异有统计学意义(t=2.239,P=0.025),但术后6周时VAS评分比较差异无统计学意义(t=0.308,P=0.760);末次随访时AOFAS评分和VAS评分比较,两组之间差异无统计学意义(t=0.045,P=0.965;t=0.203,P=0.840);IB组术后完全负重行走时间、术后恢复跑步的时间显著早于带线锚钉组,差异有统计学意义(t=26.566,P<0.01;t=4.838,P<0.01)。结论IB与带线锚钉通过改良Broström术开放治疗慢性踝关节不稳的临床疗效满意,且使用IB在早期康复和重返运动方面优于带线锚钉。