The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue ...The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications.展开更多
Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They ca...Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They can achieve optical communication interconnections and high-speed bidirectional data transmission between optical terminals and photodetectors in space,ensuring the stability and reliability of data transmission during spacecraft operations in orbit.They have become essential components in high-speed networking and optically interconnected communications for spacecrafts.Thermal stress simulation analysis is important for evaluating the temperature stress concentration phenomenon resulting from temperature fluctuations,temperature gradients,and other factors in aerospace optical cables and connectors under the combined effects of extreme temperatures and vacuum environments.Considering this,advanced optical communication technology has been widely used in high-speed railway communication networks to transmit safe,stable and reliable signals,as high-speed railway optical communication in special areas with extreme climates,such as cold and high-temperature regions,requires high-reliability optical cables and connectors.Therefore,based on the finite element method,comprehensive comparisons were made between the thermal distributions of aerospace optical cables and J599III fiber optic connectors under different conditions,providing a theoretical basis for evaluating the performance of aerospace optical cables and connectors in space environments and meanwhile building a technical foundation for potential optical communication applications in the field of high-speed railways.展开更多
A Mobile Offshore Base (MOB) is a multi-purpose logistics base, which can be stationed in coastal or international waters. In the conceptual design of the MOB, attention should he paid to the dynamic responses of the ...A Mobile Offshore Base (MOB) is a multi-purpose logistics base, which can be stationed in coastal or international waters. In the conceptual design of the MOB, attention should he paid to the dynamic responses of the inter-module connectors because tremendous loads occur in the connectors. In this paper, a study on dynamic responses of the MOB connectors is carried out by use of the Rigid Module Flexible Connector (RMFC) model which assumes that the module stiffness is significantly larger than that of the connector. In the analysis, the connector is modeled as a linear spring, which restricts relative translations but allows for relative rotations of modules. The 3-D source distribution method is adopted to determine the hydrodynamic forces of the modules, and the hydrodynamic interaction between modules is taken into account. The module motions and connector loads for 12 connector stiffness cases in regular and irregular waves are calculated with the multi-rigid-body motion equations. And the calculated results are compared with those from relative references. It is shown that the results obtained by different methods are in good agreement.展开更多
In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power ...In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power flow in the finite plate are calculated by the Mindlin plate theory (MPT) and classic plate theory (CPT).To satisfy the boundary conditions and continuous conditions at the coupled junction of the finite L-shaped plate,the near-field and far-field waves are entirely contained in the wave approach.The in-plane longitudinal and shear waves are also considered.The results indicate that the vibratory power flow based on the MPT is different from that based on the CPT not only at high frequencies but also at low and medium frequencies.The influence of the plate thickness on the vibrational power flow is investigated.From the results it is seen that the shear and rotary inertia correction of the MPT can influence the active and reactive power at the junction of the L-shaped plate not only at high frequencies but also at low and medium frequencies.Furthermore,the effects of structural damping on the active and reactive power flow at the junction are also analyzed.展开更多
Since the previous strength prediction models for the perfobond rib connector were proposed based upon the results of push-out tests conducted on concretes with compressive strength below 50 MPa, push-out test is perf...Since the previous strength prediction models for the perfobond rib connector were proposed based upon the results of push-out tests conducted on concretes with compressive strength below 50 MPa, push-out test is performed on perfobond shear connectors applying ultra high performance concretes with compressive strength higher than 80 MPa to evaluate their shear resistance. The test variables are chosen to be the diameter and number of dowel holes and, the change in the shear strength of the perfobond rib connector is examined with respect to the strength of two types of UHPC: steel fiber-reinforced concrete with compressive strength of 180 MPa and concrete without steel fiber with compressive strength of 80 MPa. The test results reveal that higher concrete strength and larger number of holes increased the shear strength, and that higher increase rate in the shear strength was achieved by the dowel action. The comparison with the predictions obtained by the previous models shows that the experimental results are close to the values given by the model proposed by Oguejiofor and Hosain [1].展开更多
The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggr...The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggregate concrete (RAC)–steel column (FRSC), consisting of an outer FRP tube, an inner steel tube and annular RAC fi lled between two tubes, is proposed herein to facilitate green disposal of demolished concrete and to improve the ductility of concrete columns for earthquake resistance. To better understand the seismic behavior of FRSCs, quasi-static tests of large-scale basalt FRSCs with shear connectors were conducted. The infl uence of the recycled coarse aggregate (RCA) replacement percentage, shear connectors and axial loading method on the lateral load and deformation capacity, energy dissipation and cumulative damage were analyzed to evaluate the seismic behavior of FRSCs. The test results show that FRSCs have good seismic behavior, which was evidenced by high lateral loads, excellent ductility and energy dissipation capacity, indicating RAC is applicable in FRSCs. Shear connectors can signifi cantly postpone the steel buckling and increase the lateral loads of FRSCs, but weaken the deformation capacity and energy dissipation performance.展开更多
Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical proper...Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.展开更多
This paper investigates a simplified method to determine the optimal stiffness of flexible connectors on a mobile offshore base(MOB) during the preliminary design stage. A three-module numerical model of an MOB was us...This paper investigates a simplified method to determine the optimal stiffness of flexible connectors on a mobile offshore base(MOB) during the preliminary design stage. A three-module numerical model of an MOB was used as a case study. Numerous constraint forces and relative displacements for the connectors at rough sea states with different wave angles were utilized to determine the optimized stiffness of the flexible connectors. The range of optimal stiffnesses for the connectors was obtained based on the combination and intersection of the optimized stiffness results, and the implementation steps were elaborated in detail. The percentage reductions of the optimized and optimal stiffness of the flexible connector were determined to quantitatively evaluate the decreases of the constraint force and relative displacement of the connectors compared with those calculated by using the original range of the connector stiffnesses. The results indicate the accuracy and feasibility of this method for determining the optimal stiffness of the flexible connectors and demonstrate the rationality and practicability of the optimal stiffness results. The research ideas, calculation process, and solutions for the optimal stiffness of the flexible connectors of an MOB in this paper can provide valuable technical support for the design of the connectors in similar semisubmersible floating structures.展开更多
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven...A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.展开更多
L-shaped plates have become an important focuses in structural vibration research. To determine their vibration characteristics, this paper applied a mobility power flow method. Firstly, the L-shaped plate was divided...L-shaped plates have become an important focuses in structural vibration research. To determine their vibration characteristics, this paper applied a mobility power flow method. Firstly, the L-shaped plate was divided into two substructures to simplify analysis. The coupled bending moment was then deduced by applying a continuous vibration property on the common edge. Next, the response on any point of the plate and the input and transmitted power flow formulas were calculated. Numerical simulations showed the distribution of the coupled bending moment and the response of the whole structure. The validity of this method was verified by the SEA approach.展开更多
With the completion of the Qinghai-Tibetan Railway,economic development of related areas has been greatly accelerated.This,in return,calls for building or upgrading more roadways,especially high-grade roadways.In cold...With the completion of the Qinghai-Tibetan Railway,economic development of related areas has been greatly accelerated.This,in return,calls for building or upgrading more roadways,especially high-grade roadways.In cold regions,the thawing of permafrost can induce settlement damage of and even failure to railway (or roadway) embankments.Thermosyphons (self-powered refrigera-tion devices that are used to help keep the permafrost cool) have proved effective in mitigating thaw settlement by maintaining the thermal stability of the embankments.However,for high-grade roadway embankments of great width,stabilizing or cooling ef-fects of traditional geotechnological measures may be limited.To enhance the cooling effect of thermosyphons,an L-shaped thermosyphon was designed.A laboratory test was carried out to study the combined cooling effect of the L-shaped thermosyphon and thermal insulation applying to roadbed construction.The angle between the evaporator and condenser sections of the L-shaped thermosyphon is 134 degrees,and the L-shaped thermosyphon was inserted into the soil at an angle of 5 degrees with the road surface.The tested results show that the L-shaped thermosyphon is effective in removing heat from a roadway in winter.When the ambient air temperature is lower than the soil temperature,the thermosyphon is active and extracts the heat in the soil around it.When the ambient air temperature is higher than the soil temperature,the thermosyphon is inactive,and no heat is in-jected into the soil through the L-shaped thermosyphon.Compared to embankments with straight thermosyphons,the inner parts of the embankments with L-shaped thermosyphons were significantly cooled.It is hoped that the present study would be useful to the application of L-shaped thermosyphons in the construction of high-grade roadways in cold regions.展开更多
Investigations of the seismic behavior of steel reinforced concrete L-shaped columns under constant axial compression and cycled bending-shear-torsion load were performed.Six specimens,which considered two parameters,...Investigations of the seismic behavior of steel reinforced concrete L-shaped columns under constant axial compression and cycled bending-shear-torsion load were performed.Six specimens,which considered two parameters,i.e.,the moment ratio of torsion to bending(γ)and the aspect ratio(column length-to-depth ratio,φ),were prepared for the experiment.In this study,the failure process,torsion-displacement hysteresis curves,and flexure-displacement hysteresis curves were obtained.The failure characteristics,mechanical behavior of specimens such as the failure patterns,hysteresis curves,rigidity degradation,ductility and energy dissipation,are analyzed.The experimental research indicated that the major failures of the specimens were bending failure,bending-shear failure and bending-torsion failure as the moment ratio of torsion to bending(γ)increased.The torsion-displacement hysteresis curves were pinched in the middle,formed a slip platform,and the phenomenon of“load drop”occurred after the peak load.The bending-displacement hysteresis curves were plump,which showed that bending capacity of the specimen was better than its torsion capacity.Additionally,the energy dissipation of the specimen was dominated by torsion in the early stage and ultimately governed by the bending moment in the later phase.Test results also indicated that the displacement ductility coefficient and interstory rotation angle of the failure point were less than 3.0 and 1/50,respectively,which means the test specimen performance does not meet the requirement of the Chinese Code for Seismic Design of Buildings(GB 50011-2014)in this respect.展开更多
Libraries at large academic medical centers in the United States are undergoing a transformation from their traditional role as knowledge repositories to a new role as connectors to knowledge. This transformation is f...Libraries at large academic medical centers in the United States are undergoing a transformation from their traditional role as knowledge repositories to a new role as connectors to knowledge. This transformation is fueled by the move away from library-held print resources as the primary source of information used by researchers,clinicians and students. Knowledge resources critical to the missions of academic medical centers now include online books and journals,very large data sets,software tools,and expertise far beyond the walls of the library. This article illustrates how Bernard Becker Medical Library at Washington University in St. Louis has seized the opportunity to recast itself as a connector to knowledge beyond literature and strengthen its vital role within the university as a catalyst for learning and discovery.展开更多
With Al2O3 and SiO2 as polishing medium, under different polishing conditions, e.g. with different polishing pressure, polishing time and polishing fluid, the influences of polishing treatment on the return loss of op...With Al2O3 and SiO2 as polishing medium, under different polishing conditions, e.g. with different polishing pressure, polishing time and polishing fluid, the influences of polishing treatment on the return loss of optical fiber connectors were investigated. The return loss of optical fiber connectors is 32CD*238dB before polishing. The results show that dry polishing(i.e. no polishing fluid) with Al2O3 has less influence on return loss of optical fiber connectors, while dry polishing with SiO2 reduces return loss to about 20dB because of the end-face of optical fiber contaminated. The wet polishing(i.e. using distilled water as polishing fluid) with Al2O3 or SiO2 can increase return loss to 45CD*250dB, but wet polishing with Al2O3 may produce optical fiber undercut depth of 80CD*2140nm. Wet polishing with SiO2 should be preferentially selected for optical fiber connectors and polishing time should be controlled within 20CD*230s.展开更多
A single layer triangular patch antenna fed by an L-shaped probe was investigated numerically by using FDTD (Finite Difference Time Domain) method. It achieves >40% impedance bandwidth (VSWR<2) and stable radiat...A single layer triangular patch antenna fed by an L-shaped probe was investigated numerically by using FDTD (Finite Difference Time Domain) method. It achieves >40% impedance bandwidth (VSWR<2) and stable radiation pattern across the passband. The triangular patch antenna with two orientations of L-shaped probe has almost the same characteristics, such as impedance bandwidth and radiation pattern. The bandwidth vs feeding position was also investigated, the broadband characteristic can be observed when the feeding position is only in a small segment along the centerline.展开更多
This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to ...This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.展开更多
The behavior of L-Shaped RC (reinforced concrete) shear walls was investigated in the Erciyes University Earthquake Investigation Laboratory under the influence of constant axial load together with reversed cyclic l...The behavior of L-Shaped RC (reinforced concrete) shear walls was investigated in the Erciyes University Earthquake Investigation Laboratory under the influence of constant axial load together with reversed cyclic lateral load. The objective of this study was to evaluate the effects of cross sectional dimensions on the behavior of L-shaped structural members and to assess their earthquake performance. In order to investigate L-shaped RC structural members, the special experiment setup and four type of 1/2 scaled specimens which have different aspect ratio were constructed. The specimens were loaded in line with the major principal axes direction laterally. Axial load ratio was 0.1 and cross section height to thickness ratios were' 3:1, 5:1, 8:1, 10:1. Cross section thickness was 120 mm which corresponds to (360:120), (600:120), (960:120), (1,200:120) wall legs cross sectional dimensions in mm. The specimens height was 1,500 mm, together with upper and lower slabs overall height was 2,000 mm. Concrete compression strength was 30 N/mm2, steel yield stress 420 N/mm2 and vertical reinforcement ratio was 1% for all specimens. According to the test results, the specimen of which the aspect ratio is 3 (360:120) has shown column behavior, the specimen of which the aspect ratio is 5 (600:120) has shown slender wall behavior and last two specimens of which the aspect ratios are 8 (960:120) and 10 (1,200:120) have shown squat wall behavior. When considering the cracking patterns and hysteretic behavior, since the aspect ratio 8, the specimens show flexure-shear interaction behavior and prone to brittle failure.展开更多
In writing and speaking, adverbial connectors always play a part to connect different parts together at both semantic and syntactic aspects. For it is so important that a lot of scholars have made and are making a ser...In writing and speaking, adverbial connectors always play a part to connect different parts together at both semantic and syntactic aspects. For it is so important that a lot of scholars have made and are making a series of studies to their functions. On the basis of corpus-based study, this paper firstly makes a comparison to the usage of adverbial connectors in their writings of the native students and non-native students and then exposes a distinctive gap between these two types of writings in usage of adverbial connectors. In order to help Chinese second-language learners acquire English as well as English native speakers do, this study deeply digs this gap and in further provides several pedagogical suggestions for English teachers and second-language learners.展开更多
Steel and ultra⁃high performance concrete(UHPC)composite decks are effective at reducing fatigue cracking and asphalt pavement damage.The shear behavior of innovative open steel tube(OST)connectors in steel⁃UHPC compo...Steel and ultra⁃high performance concrete(UHPC)composite decks are effective at reducing fatigue cracking and asphalt pavement damage.The shear behavior of innovative open steel tube(OST)connectors in steel⁃UHPC composite decks was investigated by conducting push⁃out tests.The test parameter is the presence of reinforcement in the deck.The load⁃slip curves and shear behavior of the push⁃out specimens were obtained and discussed.The test results indicate that as compared with plain concrete specimens,the limit slip of reinforced specimens decreased by 32%and the shear stiffness increased by 10%,but the ultimate shear capacity was almost the same.The use of UHPC influenced the failure process as it was observed that the OST connector was sheared off at its lower semi⁃tube,followed by the pull⁃out failure of the upper semi⁃tube.A finite element model was verified by tests and was then used to analyze the deformation and failure behaviors of the composite deck with open tubes.The model demonstrates that there is a stress concentration zone at the connector root,and the lower semi⁃tube is the main component that is subject to loads.展开更多
Two-stage problem of stochastic convex programming with fuzzy probability distribution is studied in this paper. Multicut L-shaped algorithm is proposed to solve the problem based on the fuzzy cutting and the minimax ...Two-stage problem of stochastic convex programming with fuzzy probability distribution is studied in this paper. Multicut L-shaped algorithm is proposed to solve the problem based on the fuzzy cutting and the minimax rule. Theorem of the convergence for the algorithm is proved. Finally, a numerical example about two-stage convex recourse problem shows the essential character and the efficiency.展开更多
基金the National Natural Science Foundation of China(Grant Number 52075553)the Postgraduate Research and Innovation Project of Central South University(School-Enterprise Association)(Grant Number 2021XQLH014).
文摘The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications.
基金supported by the National Natural Science Foundation of China(U23A20336).
文摘Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They can achieve optical communication interconnections and high-speed bidirectional data transmission between optical terminals and photodetectors in space,ensuring the stability and reliability of data transmission during spacecraft operations in orbit.They have become essential components in high-speed networking and optically interconnected communications for spacecrafts.Thermal stress simulation analysis is important for evaluating the temperature stress concentration phenomenon resulting from temperature fluctuations,temperature gradients,and other factors in aerospace optical cables and connectors under the combined effects of extreme temperatures and vacuum environments.Considering this,advanced optical communication technology has been widely used in high-speed railway communication networks to transmit safe,stable and reliable signals,as high-speed railway optical communication in special areas with extreme climates,such as cold and high-temperature regions,requires high-reliability optical cables and connectors.Therefore,based on the finite element method,comprehensive comparisons were made between the thermal distributions of aerospace optical cables and J599III fiber optic connectors under different conditions,providing a theoretical basis for evaluating the performance of aerospace optical cables and connectors in space environments and meanwhile building a technical foundation for potential optical communication applications in the field of high-speed railways.
基金This work was finarcially supported by the National Natural Science Foundation of China(Grant No.50039016)
文摘A Mobile Offshore Base (MOB) is a multi-purpose logistics base, which can be stationed in coastal or international waters. In the conceptual design of the MOB, attention should he paid to the dynamic responses of the inter-module connectors because tremendous loads occur in the connectors. In this paper, a study on dynamic responses of the MOB connectors is carried out by use of the Rigid Module Flexible Connector (RMFC) model which assumes that the module stiffness is significantly larger than that of the connector. In the analysis, the connector is modeled as a linear spring, which restricts relative translations but allows for relative rotations of modules. The 3-D source distribution method is adopted to determine the hydrodynamic forces of the modules, and the hydrodynamic interaction between modules is taken into account. The module motions and connector loads for 12 connector stiffness cases in regular and irregular waves are calculated with the multi-rigid-body motion equations. And the calculated results are compared with those from relative references. It is shown that the results obtained by different methods are in good agreement.
基金supported by the National Basic Research Programof China (2011CB711102)the National Natural Science Foundation of China (10672017,11002045)
文摘In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power flow in the finite plate are calculated by the Mindlin plate theory (MPT) and classic plate theory (CPT).To satisfy the boundary conditions and continuous conditions at the coupled junction of the finite L-shaped plate,the near-field and far-field waves are entirely contained in the wave approach.The in-plane longitudinal and shear waves are also considered.The results indicate that the vibratory power flow based on the MPT is different from that based on the CPT not only at high frequencies but also at low and medium frequencies.The influence of the plate thickness on the vibrational power flow is investigated.From the results it is seen that the shear and rotary inertia correction of the MPT can influence the active and reactive power at the junction of the L-shaped plate not only at high frequencies but also at low and medium frequencies.Furthermore,the effects of structural damping on the active and reactive power flow at the junction are also analyzed.
文摘Since the previous strength prediction models for the perfobond rib connector were proposed based upon the results of push-out tests conducted on concretes with compressive strength below 50 MPa, push-out test is performed on perfobond shear connectors applying ultra high performance concretes with compressive strength higher than 80 MPa to evaluate their shear resistance. The test variables are chosen to be the diameter and number of dowel holes and, the change in the shear strength of the perfobond rib connector is examined with respect to the strength of two types of UHPC: steel fiber-reinforced concrete with compressive strength of 180 MPa and concrete without steel fiber with compressive strength of 80 MPa. The test results reveal that higher concrete strength and larger number of holes increased the shear strength, and that higher increase rate in the shear strength was achieved by the dowel action. The comparison with the predictions obtained by the previous models shows that the experimental results are close to the values given by the model proposed by Oguejiofor and Hosain [1].
基金National Natural Science Foundation of China under Grant No.11472084Science and Technology Project of Guangdong Province under Grant No.2017B020238006+1 种基金Science and Technology Planning Project of Guangzhou City under Grant No.201704030057Fundamental Research Funds for the Central Universities under Grant No.21619327
文摘The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggregate concrete (RAC)–steel column (FRSC), consisting of an outer FRP tube, an inner steel tube and annular RAC fi lled between two tubes, is proposed herein to facilitate green disposal of demolished concrete and to improve the ductility of concrete columns for earthquake resistance. To better understand the seismic behavior of FRSCs, quasi-static tests of large-scale basalt FRSCs with shear connectors were conducted. The infl uence of the recycled coarse aggregate (RCA) replacement percentage, shear connectors and axial loading method on the lateral load and deformation capacity, energy dissipation and cumulative damage were analyzed to evaluate the seismic behavior of FRSCs. The test results show that FRSCs have good seismic behavior, which was evidenced by high lateral loads, excellent ductility and energy dissipation capacity, indicating RAC is applicable in FRSCs. Shear connectors can signifi cantly postpone the steel buckling and increase the lateral loads of FRSCs, but weaken the deformation capacity and energy dissipation performance.
基金Foundation of Key Laboratory of Coast Civil Structure Safety (Tianjin University),Ministry of EducationChinese Program for New Century Excellent Talents in University+1 种基金Seed Foundation of Tianjin UniversitySeed Foundation of Xinjiang University
文摘Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.
基金financially supported by the National Key Research and Development Program of China(Grant Nos.2016YFC0802204and 2016YFC0802201)the National Natural Science Foundation of China(Grant No.51679166)+2 种基金the National Natural Science Fund for Innovative Research Groups Science Foundation(Grant No.51321065)the Construction Science and Technology Project of the Ministry of Transport of the People’s Republic of China(Grant No.2014328224040)the Innovative Research Program for Graduate Students at Chongqing Jiaotong University(Grant No.20140104)
文摘This paper investigates a simplified method to determine the optimal stiffness of flexible connectors on a mobile offshore base(MOB) during the preliminary design stage. A three-module numerical model of an MOB was used as a case study. Numerous constraint forces and relative displacements for the connectors at rough sea states with different wave angles were utilized to determine the optimized stiffness of the flexible connectors. The range of optimal stiffnesses for the connectors was obtained based on the combination and intersection of the optimized stiffness results, and the implementation steps were elaborated in detail. The percentage reductions of the optimized and optimal stiffness of the flexible connector were determined to quantitatively evaluate the decreases of the constraint force and relative displacement of the connectors compared with those calculated by using the original range of the connector stiffnesses. The results indicate the accuracy and feasibility of this method for determining the optimal stiffness of the flexible connectors and demonstrate the rationality and practicability of the optimal stiffness results. The research ideas, calculation process, and solutions for the optimal stiffness of the flexible connectors of an MOB in this paper can provide valuable technical support for the design of the connectors in similar semisubmersible floating structures.
文摘A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.
基金Supported by the National Natural Science Foundation under Grant No. 50675177.
文摘L-shaped plates have become an important focuses in structural vibration research. To determine their vibration characteristics, this paper applied a mobility power flow method. Firstly, the L-shaped plate was divided into two substructures to simplify analysis. The coupled bending moment was then deduced by applying a continuous vibration property on the common edge. Next, the response on any point of the plate and the input and transmitted power flow formulas were calculated. Numerical simulations showed the distribution of the coupled bending moment and the response of the whole structure. The validity of this method was verified by the SEA approach.
基金supported by National Natural Science Foundation of China (Grant No.40730736 and No.40601023)the National Hi-Tech Research and Development Plan (2008AA11Z103)the Western Project Program of the Chinese Academy of Sciences (No.KZCX2-XB2-10)
文摘With the completion of the Qinghai-Tibetan Railway,economic development of related areas has been greatly accelerated.This,in return,calls for building or upgrading more roadways,especially high-grade roadways.In cold regions,the thawing of permafrost can induce settlement damage of and even failure to railway (or roadway) embankments.Thermosyphons (self-powered refrigera-tion devices that are used to help keep the permafrost cool) have proved effective in mitigating thaw settlement by maintaining the thermal stability of the embankments.However,for high-grade roadway embankments of great width,stabilizing or cooling ef-fects of traditional geotechnological measures may be limited.To enhance the cooling effect of thermosyphons,an L-shaped thermosyphon was designed.A laboratory test was carried out to study the combined cooling effect of the L-shaped thermosyphon and thermal insulation applying to roadbed construction.The angle between the evaporator and condenser sections of the L-shaped thermosyphon is 134 degrees,and the L-shaped thermosyphon was inserted into the soil at an angle of 5 degrees with the road surface.The tested results show that the L-shaped thermosyphon is effective in removing heat from a roadway in winter.When the ambient air temperature is lower than the soil temperature,the thermosyphon is active and extracts the heat in the soil around it.When the ambient air temperature is higher than the soil temperature,the thermosyphon is inactive,and no heat is in-jected into the soil through the L-shaped thermosyphon.Compared to embankments with straight thermosyphons,the inner parts of the embankments with L-shaped thermosyphons were significantly cooled.It is hoped that the present study would be useful to the application of L-shaped thermosyphons in the construction of high-grade roadways in cold regions.
基金National Natural Science Foundation of China under Grant Nos.51268004 and 51578163Natural Science Foundation of Guangxi under Grant No 2016GXNSFDA380032Bagui Scholar Program of Guangxi under Grant No:[2019]79。
文摘Investigations of the seismic behavior of steel reinforced concrete L-shaped columns under constant axial compression and cycled bending-shear-torsion load were performed.Six specimens,which considered two parameters,i.e.,the moment ratio of torsion to bending(γ)and the aspect ratio(column length-to-depth ratio,φ),were prepared for the experiment.In this study,the failure process,torsion-displacement hysteresis curves,and flexure-displacement hysteresis curves were obtained.The failure characteristics,mechanical behavior of specimens such as the failure patterns,hysteresis curves,rigidity degradation,ductility and energy dissipation,are analyzed.The experimental research indicated that the major failures of the specimens were bending failure,bending-shear failure and bending-torsion failure as the moment ratio of torsion to bending(γ)increased.The torsion-displacement hysteresis curves were pinched in the middle,formed a slip platform,and the phenomenon of“load drop”occurred after the peak load.The bending-displacement hysteresis curves were plump,which showed that bending capacity of the specimen was better than its torsion capacity.Additionally,the energy dissipation of the specimen was dominated by torsion in the early stage and ultimately governed by the bending moment in the later phase.Test results also indicated that the displacement ductility coefficient and interstory rotation angle of the failure point were less than 3.0 and 1/50,respectively,which means the test specimen performance does not meet the requirement of the Chinese Code for Seismic Design of Buildings(GB 50011-2014)in this respect.
文摘Libraries at large academic medical centers in the United States are undergoing a transformation from their traditional role as knowledge repositories to a new role as connectors to knowledge. This transformation is fueled by the move away from library-held print resources as the primary source of information used by researchers,clinicians and students. Knowledge resources critical to the missions of academic medical centers now include online books and journals,very large data sets,software tools,and expertise far beyond the walls of the library. This article illustrates how Bernard Becker Medical Library at Washington University in St. Louis has seized the opportunity to recast itself as a connector to knowledge beyond literature and strengthen its vital role within the university as a catalyst for learning and discovery.
文摘With Al2O3 and SiO2 as polishing medium, under different polishing conditions, e.g. with different polishing pressure, polishing time and polishing fluid, the influences of polishing treatment on the return loss of optical fiber connectors were investigated. The return loss of optical fiber connectors is 32CD*238dB before polishing. The results show that dry polishing(i.e. no polishing fluid) with Al2O3 has less influence on return loss of optical fiber connectors, while dry polishing with SiO2 reduces return loss to about 20dB because of the end-face of optical fiber contaminated. The wet polishing(i.e. using distilled water as polishing fluid) with Al2O3 or SiO2 can increase return loss to 45CD*250dB, but wet polishing with Al2O3 may produce optical fiber undercut depth of 80CD*2140nm. Wet polishing with SiO2 should be preferentially selected for optical fiber connectors and polishing time should be controlled within 20CD*230s.
文摘A single layer triangular patch antenna fed by an L-shaped probe was investigated numerically by using FDTD (Finite Difference Time Domain) method. It achieves >40% impedance bandwidth (VSWR<2) and stable radiation pattern across the passband. The triangular patch antenna with two orientations of L-shaped probe has almost the same characteristics, such as impedance bandwidth and radiation pattern. The bandwidth vs feeding position was also investigated, the broadband characteristic can be observed when the feeding position is only in a small segment along the centerline.
基金National Natural Science Foundation of China under Grant No.51978397。
文摘This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.
文摘The behavior of L-Shaped RC (reinforced concrete) shear walls was investigated in the Erciyes University Earthquake Investigation Laboratory under the influence of constant axial load together with reversed cyclic lateral load. The objective of this study was to evaluate the effects of cross sectional dimensions on the behavior of L-shaped structural members and to assess their earthquake performance. In order to investigate L-shaped RC structural members, the special experiment setup and four type of 1/2 scaled specimens which have different aspect ratio were constructed. The specimens were loaded in line with the major principal axes direction laterally. Axial load ratio was 0.1 and cross section height to thickness ratios were' 3:1, 5:1, 8:1, 10:1. Cross section thickness was 120 mm which corresponds to (360:120), (600:120), (960:120), (1,200:120) wall legs cross sectional dimensions in mm. The specimens height was 1,500 mm, together with upper and lower slabs overall height was 2,000 mm. Concrete compression strength was 30 N/mm2, steel yield stress 420 N/mm2 and vertical reinforcement ratio was 1% for all specimens. According to the test results, the specimen of which the aspect ratio is 3 (360:120) has shown column behavior, the specimen of which the aspect ratio is 5 (600:120) has shown slender wall behavior and last two specimens of which the aspect ratios are 8 (960:120) and 10 (1,200:120) have shown squat wall behavior. When considering the cracking patterns and hysteretic behavior, since the aspect ratio 8, the specimens show flexure-shear interaction behavior and prone to brittle failure.
文摘In writing and speaking, adverbial connectors always play a part to connect different parts together at both semantic and syntactic aspects. For it is so important that a lot of scholars have made and are making a series of studies to their functions. On the basis of corpus-based study, this paper firstly makes a comparison to the usage of adverbial connectors in their writings of the native students and non-native students and then exposes a distinctive gap between these two types of writings in usage of adverbial connectors. In order to help Chinese second-language learners acquire English as well as English native speakers do, this study deeply digs this gap and in further provides several pedagogical suggestions for English teachers and second-language learners.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51478120)。
文摘Steel and ultra⁃high performance concrete(UHPC)composite decks are effective at reducing fatigue cracking and asphalt pavement damage.The shear behavior of innovative open steel tube(OST)connectors in steel⁃UHPC composite decks was investigated by conducting push⁃out tests.The test parameter is the presence of reinforcement in the deck.The load⁃slip curves and shear behavior of the push⁃out specimens were obtained and discussed.The test results indicate that as compared with plain concrete specimens,the limit slip of reinforced specimens decreased by 32%and the shear stiffness increased by 10%,but the ultimate shear capacity was almost the same.The use of UHPC influenced the failure process as it was observed that the OST connector was sheared off at its lower semi⁃tube,followed by the pull⁃out failure of the upper semi⁃tube.A finite element model was verified by tests and was then used to analyze the deformation and failure behaviors of the composite deck with open tubes.The model demonstrates that there is a stress concentration zone at the connector root,and the lower semi⁃tube is the main component that is subject to loads.
文摘Two-stage problem of stochastic convex programming with fuzzy probability distribution is studied in this paper. Multicut L-shaped algorithm is proposed to solve the problem based on the fuzzy cutting and the minimax rule. Theorem of the convergence for the algorithm is proved. Finally, a numerical example about two-stage convex recourse problem shows the essential character and the efficiency.