The final quality of complex conical-section rings depends on co-design of multiple processes in forming process chain.In this study,for a complex aeroengine casing ring with a large slope and a flange on its end,a co...The final quality of complex conical-section rings depends on co-design of multiple processes in forming process chain.In this study,for a complex aeroengine casing ring with a large slope and a flange on its end,a co-design method of the forming process chain is put forward towards the objective of precision forming,which not only proposes a standard process route composed of multiple processes of upsetting,punching,rectangular ring rolling,loose tooling forging and profiled ring rolling,but also presents co-design methods of dies and blanks for all the processes.For profiled ring rolling,a design method of preformed blank that makes the blank and the target conical-section ring have the same axial volume distribution is proposed.By the method,the axial metal redistribution during the process can be alleviated greatly thus improving the forming stability and precision of the ring.Based on the geometric features of designed preformed blank,design methods of blanks and dies for loose tolling forging,rectangular ring rolling,punching and upsetting are proposed sequentially.In view of the key roles of loose tooling forging(manufacturing the preformed blank)and profiled ring rolling on the final quality of the conical ring parts,inherited FE simulations for these two processes are performed to verify the proposed design methods and determine appropriate design parameter.It is demonstrated that the proposed design method has significant advantages in improving forming precision.Besides,a suggestive value 1.5 of the rolling ratio for profiled ring rolling(a key design parameter)is given based on comprehensive consideration of multiple indicators such as ring roundness,deformation uniformity and forming load.The corresponding industrial experiments performed illustrate that a high forming precision of the conical-section aeroengine casing ring is achieved.展开更多
The H2Ge=Ge:, as well as and its derivatives (X2Ge=Ge:, X=H, Me, F, C1, Br, Ph, At, ...) is a kind of new species. Its cycloaddition reactions is a new area for the study of germylene chemistry. The mechanism of t...The H2Ge=Ge:, as well as and its derivatives (X2Ge=Ge:, X=H, Me, F, C1, Br, Ph, At, ...) is a kind of new species. Its cycloaddition reactions is a new area for the study of germylene chemistry. The mechanism of the cycloaddition reaction between singlet Me2Ge=Ge: and acetaldehyde was investigated with the B3LYP/6-31G* method in this work. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule is that the two reactants firstly form a four-membered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Ge-heterocyclic ring germylene and the ~ orbital of acetaldehyde forming a r^--~p donor-acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with acetaldehyde to form an intermedi- ate. Because the Ge atom in intermediate happens sp3 hybridization after transition state, then, intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. The research result indicates the laws of cycloaddition reaction between Me2Ge=Ge: and ac- etaldehyde, and lays the theory foundation of the cycloaddition reaction between H2Ge=Ge: and its derivatives (X2Ge=Ge:, X=H, Me, F, C1, Br, Ph, At, ...) and asymmetric ^-bonded compounds, which are significant for the synthesis of small-ring and spiro-Ge-heterocyclic ring compounds.展开更多
H2Ge=Si: and its derivatives (X2Ge=Si:, X=H, Me, F, C1, Br, Ph, Ar, ...) are new species. Its cycloaddition reactions are new area for the study of silylene chemistry. The cycloaddition reaction mechanism of singl...H2Ge=Si: and its derivatives (X2Ge=Si:, X=H, Me, F, C1, Br, Ph, Ar, ...) are new species. Its cycloaddition reactions are new area for the study of silylene chemistry. The cycloaddition reaction mechanism of singlet H2Ge=Si: and formaldehyde has been investigated with the MP2/aug-cc-pVDZ method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule is that two reactants firstly form a four-membered Ge-heterocyclic ring silylene through the [2+2] cycloaddition reaction. Because of the 3p unoccupied orbital of Si: atom in the four-membered Ge-heterocyclic ring silylene and the π orbital of formaldehyde forming a π--p donor-acceptor bond, the four-membered Ge-heterocyclic ring silylene further combines with formaldehyde to form an intermediate. Because the Si: atom in the intermediate undergoes sp3 hybridization after transition state, then the intermediate isomerizes to a spiro-Si-heterocyclic ring compound involving Ge via a transition state. The result indicates the laws of cycloaddition reaction between H2Ge=Si: or its derivatives (X2Ge=Si:, X=H, Me, F, Cl, Br, Ph, Ar, ...) and asymmetric π-bonded compounds are significant for the synthesis of small-ring involving Si and Ge and spiro-Si-heterocyclic ring compounds involving Ge.展开更多
The X2Ge=Si: (X = H, Me, F, reaction is a new area for the study of silylene between singlet CI2Ge=Si: and formaldehyde CI, Br, Ph, At...) is a new species. Its cycloaddition chemistry. The mechanism of cycloaddit...The X2Ge=Si: (X = H, Me, F, reaction is a new area for the study of silylene between singlet CI2Ge=Si: and formaldehyde CI, Br, Ph, At...) is a new species. Its cycloaddition chemistry. The mechanism of cycloaddition reaction has been investigated with CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The reaction rule presented is that the two reactants firstly form a four-membered Ge-heterocyclic ring silylene through the [2+2] cycloaddition reaction. Owing to the 3p unoccupied orbital of Si: atom in the four-membered Ge-heterocyclic ring silylene and the π orbital of formaldehyde forming a π-p donor-acceptor bond, the four-membered Ge-heterocyclic ring silylene further combines with formaldehyde to form an intermediate. Because the Si: atom in intermediate shows sp3 hybridization after transition state, the intermediate isomerizes to a spiro-Si-heterocyclic ring compound involving Ge via a transition state. Simultaneously, the ring strain of the four-membered Ge-heterocyclic ring silylene makes it isomerize to a twisted four-membered ring product. The research result indicates the laws of cycloaddition reaction between X2Ge=Si: (X = H, Me, F, C1, Br, Ph, Ar...) and the asymmetric g-bonded compounds, which are significant for the synthesis of small-ring and spiro-Si-heterocyclic ring compound involving Ge The study extends the research area and enriches the research content of silvlene chemistrv.展开更多
X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar...) is a new species. Its cycloaddition reaction is a new area for the study of germylene chemistry. The mechanism of cycloaddition reaction between singlet state Me2Si=Ge: a...X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar...) is a new species. Its cycloaddition reaction is a new area for the study of germylene chemistry. The mechanism of cycloaddition reaction between singlet state Me2Si=Ge: and formaldehyde has been investigated with the CCSD(T)//MP2/cc-pvtz method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule presented is that the two reactants first form a four-membered Si-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Si-heterocyclic ring germylene and the π orbital of formaldehyde form a π→p donor-acceptor bond, the four-membered Si-heterocyclic ring germylene further combines with formaldehyde to form an intermediate. Because the Ge atom in the intermediate undergoes sp^3 hybridization after transition state, then the intermediate isomerizes to a spiro-Ge-heterocyclic ring compound involving Si via a transition state. The research result indicates the laws of cycloaddition reaction between HzSi=Ge: and formaldehyde. It has important reference value for the cycloaddition reaction between X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar…) and asymmetric to-bonded compounds, which is significant for the synthesis of small-ring and spiro-Ge-heterocyclic compounds involving Si. The study extends research area and enriches the research content of germylene chemistry.展开更多
An advanced simulation that considers the effect of wire vibrations was proposed for predicting accurately wear profiles of a die used in a wire-drawing process.The effect of wire vibrations,the changes in the wear pr...An advanced simulation that considers the effect of wire vibrations was proposed for predicting accurately wear profiles of a die used in a wire-drawing process.The effect of wire vibrations,the changes in the wear profiles,and the generation of ringing during die approach were investigated by this simulation.Wire vibrations occurring between the die and the drum are governed by a partial differential equation called the wave equation,which is a function of the wire length,tension,density,and initial wire velocity.The wire-drawing process was simulated by the commercial code Abaqus FEA,and the die wear profiles were predicted by Archard’s wear model.The predicted profiles were compared with measured profiles of a worn drawing die after producing 5 t of AISI 1010 wire;the die was made of tungsten carbide with a Brinell hardness of HB 682.The profiles predicted by considering the effect of wire vibrations are in good agreement with the experimental data,indicating that the advanced simulation can be used to accurately predict the die wear profiles when ringing is observed during die approach.展开更多
X2Si=Sn:(X = H, Me, F, Cl, Br, Ph, Ar…) are new species of chemistry. The cycloaddition reaction of X2Si=Sn: is a new study field of stannylene chemistry. To explore the rules of cycloaddition reaction between X2Si=S...X2Si=Sn:(X = H, Me, F, Cl, Br, Ph, Ar…) are new species of chemistry. The cycloaddition reaction of X2Si=Sn: is a new study field of stannylene chemistry. To explore the rules of cycloaddition reaction between X2Si=Sn: and the symmetric p-bonded compounds, the cycloaddition reactions of Cl2Si=Sn: and ethylene were selected as model reactions in this paper.The mechanism of cycloaddition reaction between singlet Cl2Si=Sn: and ethylene has been first investigated with the MP2/GENECP(C, H, Cl, Si in 6-311++G**;Sn in LanL2dz) method in this paper. From the potential energy profile, it could be predicted that the reaction has one dominant reaction channel. The reaction rule presented is that the 5p unoccupied orbital of Sn in Cl2Si=Sn: and the π orbital of ethylene forming a p→p donor-acceptor bond, resulting in the formation of an intermediate. Instability of the intermediate makes it isomerize to a four-membered Si-heterocyclic ring stannylene. Because the 5p unoccupied orbital of Sn atom in the four-membered Si-heterocyclic ring stannylene and the π orbital of ethylene form a p→p donor-acceptor bond, the four-membered Si-heterocyclic ring stannylene further combines with ethene to form another intermediate. Because the Sn atom in the intermediate shows sp3 hybridization after transition state, the intermediate isomerizes to a Si-heterocyclic spiro-Sn-heterocyclic ring compound. The research result indicates the laws of cycloaddition reaction between X2Si=Sn: and the symmetric π-bonded compounds. The study opens up a new research field for stannylene chemistry.展开更多
Background: RING H2 finger E3 ligase (RH2FE3) genes encode cysteine rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormone...Background: RING H2 finger E3 ligase (RH2FE3) genes encode cysteine rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormones and abiotic stresses are well documented in various species, but their roles in cotton fiber development are poorly understood. To date, genome wide identification and expression analyses of Gossypium hirsutum RH2FE3 genes have not been reported. Methods: We performed computational identification, structural and phylogenetic analyses, chromosomal distribution analysis and estimated KJKs values of G hirsutum RH2FE3 genes. Orthologous and paralogous gene pairs were identified by all versus all BLASTP searches. We predicted cis regulatory elements and analyzed microarray data sets to generate heatmaps at different development stages. Tissue specific expression in cotton fiber, and hormonal and abiotic stress responses were determined by quantitative real time polymerase chain reaction (qRT PCR) analysis. Results: We investigated 140 G hirsutum, 80 G. orboreum, and evolutionary mechanisms and compared them with orthologs 89 G. roimondii putative RH2FB genes and their in Arobidopsis and rice. A domain based analysis of the G hirsutum RH2FE3 genes predicted conserved signature motifs and gene structures. Chromosomal localization showed the genes were distributed across all G hirsutum chromosomes, and 60 duplication events (4 tandem and 56 segmental duplications) and 98 orthologs were detected, cis elements were detected in the promoter regions of G hirsutum RH2FE3 genes. Microarray data and qRT PCR analyses showed that G hirsutum RH2FE3 genes were strongly correlated with cotton fiber development. Additionally, almost all the (brassinolide, gibberellic acid (GA), indole 3-acetic acid drought, and salt). dentified genes were up regulated in response to phytohormones (IAA), and salicylic acid (SA)) and abiotic stresses (cold, heat, Conclusions: The genome wide identification, comprehensive analysis, and characterization of conserved domains and gene structures, as well as phylogenetic analysis, cis element prediction, and expression profile analysis of G hirsutum RH2FE3 genes and their roles in cotton fiber development and responses to plant hormones and abiotic stresses are reported here for the first time. Our findings will contribute to the genome wide analysis of putative RH2FE3 genes in other species and lay a foundation for future physiological and functional research on G hirsutum RH2FE3 genes.展开更多
To reduce the friction of a piston ring while maintaining a large oil film load-carrying capacity,an approach comprising of the inverse method and the sequential quadratic programming algorithm was proposed.The approa...To reduce the friction of a piston ring while maintaining a large oil film load-carrying capacity,an approach comprising of the inverse method and the sequential quadratic programming algorithm was proposed.The approach considers the variation of mixed lubrication and variable lubricant viscosity with temperature along the engine stroke,is developed to optimize the profile of a piston ring.A piston ring profile is represented by a polynomial function.A case study of the second piston ring shows that the proposed method can be applied for the optimization of a piston ring profile.In addition,this paper illustrates the effects of the degree of a polynomial function.The results show that the minimization of friction and maximization of oil film load-carrying capacity can be balanced simultaneously when the degree of the polynomial is 2 and 5.展开更多
We propose a new type of two-dimensional (2D) photonic crystal L-shaped bent waveguides based on ring resonators with an acceptable bandwidth. The proposed structure mechanism is based on coupling between a waveguid...We propose a new type of two-dimensional (2D) photonic crystal L-shaped bent waveguides based on ring resonators with an acceptable bandwidth. The proposed structure mechanism is based on coupling between a waveguide and a ring resonator. This structure is designed and verified by finite-difference time-domain (FDTD) computation. Our simulation using this method gets over 90% output.展开更多
基金the National Natural Science Foundation of China(52275378).
文摘The final quality of complex conical-section rings depends on co-design of multiple processes in forming process chain.In this study,for a complex aeroengine casing ring with a large slope and a flange on its end,a co-design method of the forming process chain is put forward towards the objective of precision forming,which not only proposes a standard process route composed of multiple processes of upsetting,punching,rectangular ring rolling,loose tooling forging and profiled ring rolling,but also presents co-design methods of dies and blanks for all the processes.For profiled ring rolling,a design method of preformed blank that makes the blank and the target conical-section ring have the same axial volume distribution is proposed.By the method,the axial metal redistribution during the process can be alleviated greatly thus improving the forming stability and precision of the ring.Based on the geometric features of designed preformed blank,design methods of blanks and dies for loose tolling forging,rectangular ring rolling,punching and upsetting are proposed sequentially.In view of the key roles of loose tooling forging(manufacturing the preformed blank)and profiled ring rolling on the final quality of the conical ring parts,inherited FE simulations for these two processes are performed to verify the proposed design methods and determine appropriate design parameter.It is demonstrated that the proposed design method has significant advantages in improving forming precision.Besides,a suggestive value 1.5 of the rolling ratio for profiled ring rolling(a key design parameter)is given based on comprehensive consideration of multiple indicators such as ring roundness,deformation uniformity and forming load.The corresponding industrial experiments performed illustrate that a high forming precision of the conical-section aeroengine casing ring is achieved.
文摘The H2Ge=Ge:, as well as and its derivatives (X2Ge=Ge:, X=H, Me, F, C1, Br, Ph, At, ...) is a kind of new species. Its cycloaddition reactions is a new area for the study of germylene chemistry. The mechanism of the cycloaddition reaction between singlet Me2Ge=Ge: and acetaldehyde was investigated with the B3LYP/6-31G* method in this work. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule is that the two reactants firstly form a four-membered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Ge-heterocyclic ring germylene and the ~ orbital of acetaldehyde forming a r^--~p donor-acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with acetaldehyde to form an intermedi- ate. Because the Ge atom in intermediate happens sp3 hybridization after transition state, then, intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. The research result indicates the laws of cycloaddition reaction between Me2Ge=Ge: and ac- etaldehyde, and lays the theory foundation of the cycloaddition reaction between H2Ge=Ge: and its derivatives (X2Ge=Ge:, X=H, Me, F, C1, Br, Ph, At, ...) and asymmetric ^-bonded compounds, which are significant for the synthesis of small-ring and spiro-Ge-heterocyclic ring compounds.
文摘H2Ge=Si: and its derivatives (X2Ge=Si:, X=H, Me, F, C1, Br, Ph, Ar, ...) are new species. Its cycloaddition reactions are new area for the study of silylene chemistry. The cycloaddition reaction mechanism of singlet H2Ge=Si: and formaldehyde has been investigated with the MP2/aug-cc-pVDZ method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule is that two reactants firstly form a four-membered Ge-heterocyclic ring silylene through the [2+2] cycloaddition reaction. Because of the 3p unoccupied orbital of Si: atom in the four-membered Ge-heterocyclic ring silylene and the π orbital of formaldehyde forming a π--p donor-acceptor bond, the four-membered Ge-heterocyclic ring silylene further combines with formaldehyde to form an intermediate. Because the Si: atom in the intermediate undergoes sp3 hybridization after transition state, then the intermediate isomerizes to a spiro-Si-heterocyclic ring compound involving Ge via a transition state. The result indicates the laws of cycloaddition reaction between H2Ge=Si: or its derivatives (X2Ge=Si:, X=H, Me, F, Cl, Br, Ph, Ar, ...) and asymmetric π-bonded compounds are significant for the synthesis of small-ring involving Si and Ge and spiro-Si-heterocyclic ring compounds involving Ge.
基金supported by the National Natural Science Foundation of China(No.51102114)
文摘The X2Ge=Si: (X = H, Me, F, reaction is a new area for the study of silylene between singlet CI2Ge=Si: and formaldehyde CI, Br, Ph, At...) is a new species. Its cycloaddition chemistry. The mechanism of cycloaddition reaction has been investigated with CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The reaction rule presented is that the two reactants firstly form a four-membered Ge-heterocyclic ring silylene through the [2+2] cycloaddition reaction. Owing to the 3p unoccupied orbital of Si: atom in the four-membered Ge-heterocyclic ring silylene and the π orbital of formaldehyde forming a π-p donor-acceptor bond, the four-membered Ge-heterocyclic ring silylene further combines with formaldehyde to form an intermediate. Because the Si: atom in intermediate shows sp3 hybridization after transition state, the intermediate isomerizes to a spiro-Si-heterocyclic ring compound involving Ge via a transition state. Simultaneously, the ring strain of the four-membered Ge-heterocyclic ring silylene makes it isomerize to a twisted four-membered ring product. The research result indicates the laws of cycloaddition reaction between X2Ge=Si: (X = H, Me, F, C1, Br, Ph, Ar...) and the asymmetric g-bonded compounds, which are significant for the synthesis of small-ring and spiro-Si-heterocyclic ring compound involving Ge The study extends the research area and enriches the research content of silvlene chemistrv.
基金supported by the National Natural Science Foundation of China(No.51102114)
文摘X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar...) is a new species. Its cycloaddition reaction is a new area for the study of germylene chemistry. The mechanism of cycloaddition reaction between singlet state Me2Si=Ge: and formaldehyde has been investigated with the CCSD(T)//MP2/cc-pvtz method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule presented is that the two reactants first form a four-membered Si-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Si-heterocyclic ring germylene and the π orbital of formaldehyde form a π→p donor-acceptor bond, the four-membered Si-heterocyclic ring germylene further combines with formaldehyde to form an intermediate. Because the Ge atom in the intermediate undergoes sp^3 hybridization after transition state, then the intermediate isomerizes to a spiro-Ge-heterocyclic ring compound involving Si via a transition state. The research result indicates the laws of cycloaddition reaction between HzSi=Ge: and formaldehyde. It has important reference value for the cycloaddition reaction between X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar…) and asymmetric to-bonded compounds, which is significant for the synthesis of small-ring and spiro-Ge-heterocyclic compounds involving Si. The study extends research area and enriches the research content of germylene chemistry.
基金supported by the National Core Research Center (NCRC) program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology (2010-0008-277)
文摘An advanced simulation that considers the effect of wire vibrations was proposed for predicting accurately wear profiles of a die used in a wire-drawing process.The effect of wire vibrations,the changes in the wear profiles,and the generation of ringing during die approach were investigated by this simulation.Wire vibrations occurring between the die and the drum are governed by a partial differential equation called the wave equation,which is a function of the wire length,tension,density,and initial wire velocity.The wire-drawing process was simulated by the commercial code Abaqus FEA,and the die wear profiles were predicted by Archard’s wear model.The predicted profiles were compared with measured profiles of a worn drawing die after producing 5 t of AISI 1010 wire;the die was made of tungsten carbide with a Brinell hardness of HB 682.The profiles predicted by considering the effect of wire vibrations are in good agreement with the experimental data,indicating that the advanced simulation can be used to accurately predict the die wear profiles when ringing is observed during die approach.
基金supported by the National Natural Science Foundation of China(No.51102114)
文摘X2Si=Sn:(X = H, Me, F, Cl, Br, Ph, Ar…) are new species of chemistry. The cycloaddition reaction of X2Si=Sn: is a new study field of stannylene chemistry. To explore the rules of cycloaddition reaction between X2Si=Sn: and the symmetric p-bonded compounds, the cycloaddition reactions of Cl2Si=Sn: and ethylene were selected as model reactions in this paper.The mechanism of cycloaddition reaction between singlet Cl2Si=Sn: and ethylene has been first investigated with the MP2/GENECP(C, H, Cl, Si in 6-311++G**;Sn in LanL2dz) method in this paper. From the potential energy profile, it could be predicted that the reaction has one dominant reaction channel. The reaction rule presented is that the 5p unoccupied orbital of Sn in Cl2Si=Sn: and the π orbital of ethylene forming a p→p donor-acceptor bond, resulting in the formation of an intermediate. Instability of the intermediate makes it isomerize to a four-membered Si-heterocyclic ring stannylene. Because the 5p unoccupied orbital of Sn atom in the four-membered Si-heterocyclic ring stannylene and the π orbital of ethylene form a p→p donor-acceptor bond, the four-membered Si-heterocyclic ring stannylene further combines with ethene to form another intermediate. Because the Sn atom in the intermediate shows sp3 hybridization after transition state, the intermediate isomerizes to a Si-heterocyclic spiro-Sn-heterocyclic ring compound. The research result indicates the laws of cycloaddition reaction between X2Si=Sn: and the symmetric π-bonded compounds. The study opens up a new research field for stannylene chemistry.
基金supported by the Major Research Plan of National Natural Science Foundation of China(NO.31690093)Young Elite Scientist Sponsorship Program by CAST(China Association for Science and Technology)
文摘Background: RING H2 finger E3 ligase (RH2FE3) genes encode cysteine rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormones and abiotic stresses are well documented in various species, but their roles in cotton fiber development are poorly understood. To date, genome wide identification and expression analyses of Gossypium hirsutum RH2FE3 genes have not been reported. Methods: We performed computational identification, structural and phylogenetic analyses, chromosomal distribution analysis and estimated KJKs values of G hirsutum RH2FE3 genes. Orthologous and paralogous gene pairs were identified by all versus all BLASTP searches. We predicted cis regulatory elements and analyzed microarray data sets to generate heatmaps at different development stages. Tissue specific expression in cotton fiber, and hormonal and abiotic stress responses were determined by quantitative real time polymerase chain reaction (qRT PCR) analysis. Results: We investigated 140 G hirsutum, 80 G. orboreum, and evolutionary mechanisms and compared them with orthologs 89 G. roimondii putative RH2FB genes and their in Arobidopsis and rice. A domain based analysis of the G hirsutum RH2FE3 genes predicted conserved signature motifs and gene structures. Chromosomal localization showed the genes were distributed across all G hirsutum chromosomes, and 60 duplication events (4 tandem and 56 segmental duplications) and 98 orthologs were detected, cis elements were detected in the promoter regions of G hirsutum RH2FE3 genes. Microarray data and qRT PCR analyses showed that G hirsutum RH2FE3 genes were strongly correlated with cotton fiber development. Additionally, almost all the (brassinolide, gibberellic acid (GA), indole 3-acetic acid drought, and salt). dentified genes were up regulated in response to phytohormones (IAA), and salicylic acid (SA)) and abiotic stresses (cold, heat, Conclusions: The genome wide identification, comprehensive analysis, and characterization of conserved domains and gene structures, as well as phylogenetic analysis, cis element prediction, and expression profile analysis of G hirsutum RH2FE3 genes and their roles in cotton fiber development and responses to plant hormones and abiotic stresses are reported here for the first time. Our findings will contribute to the genome wide analysis of putative RH2FE3 genes in other species and lay a foundation for future physiological and functional research on G hirsutum RH2FE3 genes.
基金This study is supported by the National Natural Science Foundation of China,Research Project of State Key Laboratory of Mechanical System and Vibration
文摘To reduce the friction of a piston ring while maintaining a large oil film load-carrying capacity,an approach comprising of the inverse method and the sequential quadratic programming algorithm was proposed.The approach considers the variation of mixed lubrication and variable lubricant viscosity with temperature along the engine stroke,is developed to optimize the profile of a piston ring.A piston ring profile is represented by a polynomial function.A case study of the second piston ring shows that the proposed method can be applied for the optimization of a piston ring profile.In addition,this paper illustrates the effects of the degree of a polynomial function.The results show that the minimization of friction and maximization of oil film load-carrying capacity can be balanced simultaneously when the degree of the polynomial is 2 and 5.
文摘We propose a new type of two-dimensional (2D) photonic crystal L-shaped bent waveguides based on ring resonators with an acceptable bandwidth. The proposed structure mechanism is based on coupling between a waveguide and a ring resonator. This structure is designed and verified by finite-difference time-domain (FDTD) computation. Our simulation using this method gets over 90% output.