现有信源定位方法大多假定信源是远场源或近场源,而实际定位系统中往往存在远场源和近场源共存的情况.为实现远、近场源分离及高精度信源定位,本文在稀疏信号重构理论框架下提出了一种新的远近场混合源定位算法.该算法利用阵列协方差矩...现有信源定位方法大多假定信源是远场源或近场源,而实际定位系统中往往存在远场源和近场源共存的情况.为实现远、近场源分离及高精度信源定位,本文在稀疏信号重构理论框架下提出了一种新的远近场混合源定位算法.该算法利用阵列协方差矩阵反对角线元素和重加权l_1范数惩罚获得所有信源的到达角(Direction Of Arrival,DOA)估计.在DOA估计的基础上,根据远场与近场源距离参数位于不同区间的特点利用一维搜索实现远、近场源分离以及近场源距离参数的估计.从理论角度分析了重加权l_1范数惩罚算法的重构性能.本文所提算法不仅同时适用于高斯和非高斯信号,而且无需多维搜索和参数配对,也无需信源数的先验信息,同时还可以获得较好的定位精度.计算机仿真结果验证了所提算法的有效性.展开更多
压缩感知(compressed sensing,CS)是一种全新的信息采集与处理的理论框架,借助信号内在的稀疏性或可压缩性,可以从小规模的线性、非自适应的测量中通过求解非线性优化问题重构原信号.块稀疏信号是一种具有块结构的信号,即信号的非零元...压缩感知(compressed sensing,CS)是一种全新的信息采集与处理的理论框架,借助信号内在的稀疏性或可压缩性,可以从小规模的线性、非自适应的测量中通过求解非线性优化问题重构原信号.块稀疏信号是一种具有块结构的信号,即信号的非零元是成块出现的.受YIN Peng-hang,LOU Yi-fei,HE Qi等提出的l_1-2范数最小化方法的启发,将基于l_1-l_2范数的稀疏重构算法推广到块稀疏模型,证明了块稀疏模型下l_1-l_2范数的相关性质,建立了基于l_1-l_2范数的块稀疏信号精确重构的充分条件,并通过DCA(difference of convex functions algorithm)和ADMM(alternating direction method of multipliers)给出了求解块稀疏模型下l_1-l_2范数的迭代方法.数值实验表明,基于l_1-l_2范数的块稀疏重构算法比其他块稀疏重构算法具有更高的重构成功率.展开更多
为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对...为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对野值及噪声的强鲁棒性,并且直接在图像矩阵上进行投影降维。该文还提出一种快速迭代优化算法,并给出了其单调收敛到局部最优的证明。在多个图像数据库上的实验验证了该方法的鲁棒性与高效性。展开更多
文摘现有信源定位方法大多假定信源是远场源或近场源,而实际定位系统中往往存在远场源和近场源共存的情况.为实现远、近场源分离及高精度信源定位,本文在稀疏信号重构理论框架下提出了一种新的远近场混合源定位算法.该算法利用阵列协方差矩阵反对角线元素和重加权l_1范数惩罚获得所有信源的到达角(Direction Of Arrival,DOA)估计.在DOA估计的基础上,根据远场与近场源距离参数位于不同区间的特点利用一维搜索实现远、近场源分离以及近场源距离参数的估计.从理论角度分析了重加权l_1范数惩罚算法的重构性能.本文所提算法不仅同时适用于高斯和非高斯信号,而且无需多维搜索和参数配对,也无需信源数的先验信息,同时还可以获得较好的定位精度.计算机仿真结果验证了所提算法的有效性.
文摘压缩感知(compressed sensing,CS)是一种全新的信息采集与处理的理论框架,借助信号内在的稀疏性或可压缩性,可以从小规模的线性、非自适应的测量中通过求解非线性优化问题重构原信号.块稀疏信号是一种具有块结构的信号,即信号的非零元是成块出现的.受YIN Peng-hang,LOU Yi-fei,HE Qi等提出的l_1-2范数最小化方法的启发,将基于l_1-l_2范数的稀疏重构算法推广到块稀疏模型,证明了块稀疏模型下l_1-l_2范数的相关性质,建立了基于l_1-l_2范数的块稀疏信号精确重构的充分条件,并通过DCA(difference of convex functions algorithm)和ADMM(alternating direction method of multipliers)给出了求解块稀疏模型下l_1-l_2范数的迭代方法.数值实验表明,基于l_1-l_2范数的块稀疏重构算法比其他块稀疏重构算法具有更高的重构成功率.
文摘为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对野值及噪声的强鲁棒性,并且直接在图像矩阵上进行投影降维。该文还提出一种快速迭代优化算法,并给出了其单调收敛到局部最优的证明。在多个图像数据库上的实验验证了该方法的鲁棒性与高效性。