期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于L_(1/2)范数约束增量非负矩阵分解的SAR目标识别
1
作者 张慧 党思航 崔宗勇 《计算机应用研究》 CSCD 北大核心 2018年第2期628-631,共4页
增量非负矩阵分解(INMF)随目标样本增加逐渐更新分解模型,能够有效解决NMF算法的计算代价随样本增加而成倍增长的问题。然而INMF在使NMF具备增量学习能力的同时,并未考虑NMF分解矩阵的稀疏性对识别性能的提升作用。针对上述问题,提出基... 增量非负矩阵分解(INMF)随目标样本增加逐渐更新分解模型,能够有效解决NMF算法的计算代价随样本增加而成倍增长的问题。然而INMF在使NMF具备增量学习能力的同时,并未考虑NMF分解矩阵的稀疏性对识别性能的提升作用。针对上述问题,提出基于L1/2范数约束的增量非负矩阵分解(L1/2-INMF)算法,并应用于SAR目标识别。L1/2-INMF采用L1/2范数实时约束增量过程中的NMF分解矩阵,能够在不增加计算复杂度的同时,提升识别性能。针对MSTAR数据集的仿真实验结果表明,提出的L1/2-INMF能够解决传统非负矩阵分解方法计算代价随样本增加而增加的问题。 展开更多
关键词 增量非负矩阵分解 合成孔径雷达 目标识别 l1/2范数约束
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部